Suppr超能文献

噬菌体尾刺结构域促进人类膜结合转录因子髓鞘调节因子 MYRF 的自身切割。

A Bacteriophage tailspike domain promotes self-cleavage of a human membrane-bound transcription factor, the myelin regulatory factor MYRF.

机构信息

Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.

出版信息

PLoS Biol. 2013;11(8):e1001624. doi: 10.1371/journal.pbio.1001624. Epub 2013 Aug 13.

Abstract

Myelination of the central nervous system (CNS) is critical to vertebrate nervous systems for efficient neural signaling. CNS myelination occurs as oligodendrocytes terminally differentiate, a process regulated in part by the myelin regulatory factor, MYRF. Using bioinformatics and extensive biochemical and functional assays, we find that MYRF is generated as an integral membrane protein that must be processed to release its transcription factor domain from the membrane. In contrast to most membrane-bound transcription factors, MYRF proteolysis seems constitutive and independent of cell- and tissue-type, as we demonstrate by reconstitution in E. coli and yeast. The apparent absence of physiological cues raises the question as to how and why MYRF is processed. By using computational methods capable of recognizing extremely divergent sequence homology, we identified a MYRF protein domain distantly related to bacteriophage tailspike proteins. Although occurring in otherwise unrelated proteins, the phage domains are known to chaperone the tailspike proteins' trimerization and auto-cleavage, raising the hypothesis that the MYRF domain might contribute to a novel activation method for a membrane-bound transcription factor. We find that the MYRF domain indeed serves as an intramolecular chaperone that facilitates MYRF trimerization and proteolysis. Functional assays confirm that the chaperone domain-mediated auto-proteolysis is essential both for MYRF's transcriptional activity and its ability to promote oligodendrocyte maturation. This work thus reveals a previously unknown key step in CNS myelination. These data also reconcile conflicting observations of this protein family, different members of which have been identified as transmembrane or nuclear proteins. Finally, our data illustrate a remarkable evolutionary repurposing between bacteriophages and eukaryotes, with a chaperone domain capable of catalyzing trimerization-dependent auto-proteolysis in two entirely distinct protein and cellular contexts, in one case participating in bacteriophage tailspike maturation and in the other activating a key transcription factor for CNS myelination.

摘要

中枢神经系统(CNS)的髓鞘形成对于脊椎动物神经系统的有效神经信号传递至关重要。CNS 的髓鞘形成发生在少突胶质细胞终末分化时,这个过程部分受到髓鞘调节因子 MYRF 的调节。我们使用生物信息学和广泛的生化和功能测定,发现 MYRF 作为一种完整的膜蛋白产生,必须经过加工才能将其转录因子结构域从膜上释放出来。与大多数膜结合转录因子不同,我们通过在大肠杆菌和酵母中的重建证明,MYRF 的蛋白水解似乎是组成型的,并且与细胞和组织类型无关。生理信号的明显缺失提出了一个问题,即 MYRF 是如何以及为什么被加工的。通过使用能够识别极其不同序列同源性的计算方法,我们鉴定了一个与噬菌体尾刺蛋白远相关的 MYRF 蛋白结构域。尽管发生在其他不相关的蛋白质中,但噬菌体结构域已知可伴侣尾刺蛋白的三聚化和自身切割,这就提出了一个假设,即 MYRF 结构域可能有助于一种新型的膜结合转录因子的激活方法。我们发现,MYRF 结构域确实作为一种分子内伴侣,促进 MYRF 的三聚化和蛋白水解。功能测定证实,伴侣结构域介导的自身蛋白水解对于 MYRF 的转录活性及其促进少突胶质细胞成熟的能力都是必不可少的。这项工作因此揭示了中枢神经系统髓鞘形成中一个以前未知的关键步骤。这些数据还调和了对这个蛋白质家族的相互矛盾的观察结果,该家族的不同成员被鉴定为跨膜或核蛋白。最后,我们的数据说明了噬菌体和真核生物之间的一个显著的进化重新利用,一个伴侣结构域能够在两种完全不同的蛋白质和细胞环境中催化三聚化依赖性的自身蛋白水解,在一种情况下参与噬菌体尾刺成熟,在另一种情况下激活中枢神经系统髓鞘形成的关键转录因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d01/3742443/c201cbe21125/pbio.1001624.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验