Department of Biology, University of Florida, Gainesville, Florida, United States of America.
PLoS Comput Biol. 2013;9(8):e1003178. doi: 10.1371/journal.pcbi.1003178. Epub 2013 Aug 15.
Most motile organisms use sensory cues when searching for resources, mates, or prey. The searcher measures sensory data and adjusts its search behavior based on those data. Yet, classical models of species encounter rates assume that searchers move independently of their targets. This assumption leads to the familiar mass action-like encounter rate kinetics typically used in modeling species interactions. Here we show that this common approach can mischaracterize encounter rate kinetics if searchers use sensory information to search actively for targets. We use the example of predator-prey interactions to illustrate that predators capable of long-distance directional sensing can encounter prey at a rate proportional to prey density to the [Formula: see text] power (where [Formula: see text] is the dimension of the environment) when prey density is low. Similar anomalous encounter rate functions emerge even when predators pursue prey using only noisy, directionless signals. Thus, in both the high-information extreme of long-distance directional sensing, and the low-information extreme of noisy non-directional sensing, encounter rate kinetics differ qualitatively from those derived by classic theory of species interactions. Using a standard model of predator-prey population dynamics, we show that the new encounter rate kinetics derived here can change the outcome of species interactions. Our results demonstrate how the use of sensory information can alter the rates and outcomes of physical interactions in biological systems.
大多数运动生物在寻找资源、配偶或猎物时都会利用感官线索。搜索者会测量感官数据,并根据这些数据调整其搜索行为。然而,物种遭遇率的经典模型假设搜索者与目标是独立运动的。这一假设导致了常见的类似于物质作用的遭遇率动力学,通常用于物种相互作用的建模。在这里,我们表明,如果搜索者使用感官信息主动搜索目标,这种常见的方法可能会错误地表征遭遇率动力学。我们以捕食者-猎物相互作用为例来说明,如果捕食者能够进行远距离定向感应,那么当猎物密度较低时,它们可以按照猎物密度的[Formula: see text]次幂(其中[Formula: see text]是环境的维度)与猎物密度成比例的速度遭遇猎物。即使捕食者仅使用嘈杂、无方向的信号来追捕猎物,也会出现类似的异常遭遇率函数。因此,在远距离定向感应的高信息极限和嘈杂无方向感应的低信息极限中,遭遇率动力学与物种相互作用的经典理论得出的动力学有本质上的不同。使用捕食者-猎物种群动态的标准模型,我们表明这里推导出的新遭遇率动力学可以改变物种相互作用的结果。我们的研究结果表明,感官信息的使用如何改变生物系统中物理相互作用的速度和结果。