Department of Biology, University of Florida, Gainesville, FL 32611, USA.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12070-4. doi: 10.1073/pnas.1202686109. Epub 2012 Jul 9.
Many organisms locate resources in environments in which sensory signals are rare, noisy, and lack directional information. Recent studies of search in such environments model search behavior using random walks (e.g., Lévy walks) that match empirical movement distributions. We extend this modeling approach to include searcher responses to noisy sensory data. We explore the consequences of incorporating such sensory measurements into search behavior using simulations of a visual-olfactory predator in search of prey. Our results show that including even a simple response to noisy sensory data can dominate other features of random search, resulting in lower mean search times and decreased risk of long intervals between target encounters. In particular, we show that a lack of signal is not a lack of information. Searchers that receive no signal can quickly abandon target-poor regions. On the other hand, receiving a strong signal leads a searcher to concentrate search effort near targets. These responses cause simulated searchers to exhibit an emergent area-restricted search behavior similar to that observed of many organisms in nature.
许多生物在感官信号稀缺、嘈杂且缺乏方向信息的环境中寻找资源。最近对这种环境下搜索行为的研究使用随机游走(例如 Lévy 游走)来模拟搜索行为,这些模型符合经验运动分布。我们将这种建模方法扩展到包括搜索者对嘈杂感官数据的响应。我们使用视觉嗅觉捕食者搜索猎物的模拟来探索将这种感官测量纳入搜索行为的后果。我们的结果表明,即使对嘈杂的感官数据做出简单的响应,也可以主导随机搜索的其他特征,从而导致平均搜索时间更短,目标相遇之间的长间隔风险降低。特别是,我们表明缺乏信号并不是缺乏信息。没有接收到信号的搜索者可以快速放弃猎物稀少的区域。另一方面,接收到强信号会导致搜索者集中搜索靠近目标的区域。这些响应导致模拟搜索者表现出一种新兴的区域限制搜索行为,类似于自然界中许多生物的观察结果。