Inauen W, Granger D N, Meininger C J, Schelling M E, Granger H J, Kvietys P R
Department of Physiology and Biophysics, Louisiana State University Medical Center, Shreveport 71130.
Am J Physiol. 1990 Sep;259(3 Pt 2):H925-31. doi: 10.1152/ajpheart.1990.259.3.H925.
The aim of this study was to assess the role of neutrophilic elastase in anoxia-reoxygenation-induced, neutrophil-mediated injury to microvascular endothelium. Cultured bovine microvascular endothelial cells were grown to confluence and labeled with 51Cr. The endothelial cells were exposed to a 30-min period of anoxia and subsequently reoxygenated. Endothelial cell injury, quantitated as 51Cr release and cell detachment, was determined 8 h after reoxygenation. Addition of neutrophils upon reoxygenation enhanced the anoxia-reoxygenation-induced increase in 51Cr release and cell detachment. The neutrophil-mediated injury was associated with elastase release from the neutrophils. Four agents were used to inhibit neutrophilic elastase activity: Eglin C, methoxysuccunyl-Ala2-Pro-Val-CH2Cl, L658,758, and a monoclonal antibody against neutrophilic elastase. All elastase inhibitors attenuated the neutrophil-mediated endothelial cell detachment but not 51Cr release. Addition of purified human neutrophilic elastase, at a level that mimicked the release from neutrophils, increased cell detachment in endothelial cells exposed to anoxia-reoxygenation but did not affect 51Cr release. Our results indicate that elastase plays an important role in anoxia-reoxygenation-induced, neutrophil-mediated endothelial cell dysfunction.