Suppr超能文献

通过增强银纳米线的附着力得到高柔韧性、导电且透明的薄膜。

Highly bendable, conductive, and transparent film by an enhanced adhesion of silver nanowires.

机构信息

National Creative Research Initiative, Centre for Smart Molecular Memory, Department of Chemistry and Department of Energy Science, Sungkyunkwan University , 300 Cheoncheon-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2013 Sep 25;5(18):9155-60. doi: 10.1021/am402578d. Epub 2013 Sep 11.

Abstract

Recently, silver nanowires (AgNWs) have attracted considerable interest for their potential application in flexible transparent conductive films (TCFs). One challenge for the commercialization of AgNW-based TCFs is the low conductivity and stability caused by the weak adhesion forces between the AgNWs and the substrate. Here, we report a highly bendable, conductive, and transparent AgNW film, which consists of an underlying poly(diallyldimethyl-ammonium chloride) (PDDA) and AgNW composite bottom layer and a top layer-by-layer (LbL) assembled graphene oxide (GO) and PDDA overcoating layer (OCL). We demonstrated that PDDA could increase the adhesion between the AgNW and the substrate to form a uniform AgNW network and could also serve to improve the stability of the GO OCL. Hence, a highly bendable, conductive, and transparent AgNW-PDDA-GO composite TCF on a poly(ethylene terephthalate) (PET) substrate with Rs ≈ 10 Ω/sq and T ≈ 91% could be made by an all-solution processable method at room temperature. In addition, our AgNW-PDDA-GO composite TCF is stable without degradation after exposure to H2S gas or sonication.

摘要

最近,银纳米线(AgNWs)因其在柔性透明导电薄膜(TCFs)中的潜在应用而引起了相当大的关注。AgNW 基 TCF 商业化面临的一个挑战是 AgNW 与基底之间较弱的粘附力导致的低导电性和稳定性。在这里,我们报告了一种高度可弯曲、导电和透明的 AgNW 薄膜,它由底层的聚二烯丙基二甲基氯化铵(PDDA)和 AgNW 复合底层以及顶部的层层(LbL)组装氧化石墨烯(GO)和 PDDA 覆盖层(OCL)组成。我们证明 PDDA 可以增加 AgNW 与基底之间的粘附力,形成均匀的 AgNW 网络,还可以提高 GO OCL 的稳定性。因此,可以通过室温下的全溶液处理方法在聚对苯二甲酸乙二醇酯(PET)基底上制造出具有约 10 Ω/sq 的 Rs 和约 91%的 T 的高度可弯曲、导电和透明的 AgNW-PDDA-GO 复合 TCF。此外,我们的 AgNW-PDDA-GO 复合 TCF 在暴露于 H2S 气体或超声处理后没有降解,稳定性良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验