St Denis Tyler G, Vecchio Daniela, Zadlo Andrzej, Rineh Ardeshir, Sadasivam Magesh, Avci Pinar, Huang Liyi, Kozinska Anna, Chandran Rakkiyappan, Sarna Tadeusz, Hamblin Michael R
Department of Chemistry, Columbia University, New York, NY, USA; The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary.
Free Radic Biol Med. 2013 Dec;65:800-810. doi: 10.1016/j.freeradbiomed.2013.08.162. Epub 2013 Aug 19.
Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (OH) and singlet oxygen ((1)O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN(-)) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN(-) enhanced PDT (10 µM MB, 5 J/cm(2) 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10mM (P<0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10mM (P<0.01). We determined that SCN(-) rapidly depleted O2 from an irradiated MB system, reacting exclusively with (1)O2, without quenching the MB excited triplet state. SCN(-) reacted with (1)O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN(-) in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of OH, which, together with kinetic data, strongly suggests that MB, known to produce OH and (1)O2, may, under the conditions used, preferentially form (1)O2.
抗菌光动力疗法(PDT)用于根除致病微生物细胞,涉及在有氧条件下对染料进行光激发,产生活性氧物种,包括羟基自由基(OH)和单线态氧(¹O₂)。为了通过形成寿命更长的自由基物种来化学增强光动力疗法,我们研究了硫氰酸盐(SCN⁻)是否能增强亚甲蓝(MB)以及光介导的对革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌的杀伤作用。SCN⁻以浓度依赖的方式增强了光动力疗法(10 μM MB,5 J/cm² 660 nm光照)对金黄色葡萄球菌的杀伤作用,在10 mM时杀伤率提高了2.5个对数级,最高达到4.2个对数级(P<0.001),并在10 mM时将大肠杆菌的杀伤率提高了3.6个对数级,最高达到5.0个对数级(P<0.01)。我们确定SCN⁻能迅速从辐照的MB体系中消耗氧气,仅与¹O₂反应,而不淬灭MB激发三重态。SCN⁻与¹O₂反应,产生一个三氧化硫自由基阴离子(通过电子顺磁共振自旋捕获证明是一个以硫为中心的自由基)。我们发现溶液中SCN⁻的MB光动力疗法产生了亚硫酸根和氰根阴离子,并且分别添加这些盐中的每一种都增强了MB光动力疗法对细菌的杀伤作用。我们未能检测到OH的电子顺磁共振信号,结合动力学数据,强烈表明已知能产生OH和¹O₂的MB,在所用条件下可能优先形成¹O₂。