Suppr超能文献

多视图人脸检测和配准,需要最少的人工干预。

Multiview face detection and registration requiring minimal manual intervention.

机构信息

School of Electrical and Electronic Engineering,Nanyang Technological University and Institute for Infocomm Research, Singapore.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Oct;35(10):2484-97. doi: 10.1109/TPAMI.2013.37.

Abstract

Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose.

摘要

大多数人脸识别系统都需要事先检测和定位人脸。本文提出了一种同时检测和定位任意视角和不同尺度的多个人脸的方法。本文的主要贡献是引入了一个人脸星座,它可以实现多视角人脸检测和定位。与其他需要许多手动标记图像进行训练的多视角方法不同,所提出的人脸星座仅需要一张包含两个手动指示参考点的人脸参考图像用于初始化。随后,从任意视角拍摄的训练人脸图像将根据找到的独特局部特征之间的对应关系自动添加到星座中(注册到参考图像)。因此,所提出方案的主要优势是训练人脸星座所需的最小手动干预。我们还提出了一种在存在大量误匹配的情况下识别人脸图像对之间独特对应点的方法。为了检测和定位任意视角的多个人脸,我们提出了一种基于概率分类器的公式来评估局部特征簇是否对应于人脸。在 FERET、CMU 和 FDDB 数据集上进行的实验结果表明,与最先进的任意姿态人脸检测方法相比,我们提出的方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验