Suppr超能文献

在微流控芯片中对三维细胞构建体进行可扩展的对准。

Scalable alignment of three-dimensional cellular constructs in a microfluidic chip.

机构信息

Department of Bioengineering, National University of Singapore, Block EA, #03-12, 9 Engineering Drive 1, Singapore 117576, Singapore.

出版信息

Lab Chip. 2013 Oct 21;13(20):4124-33. doi: 10.1039/c3lc50730k. Epub 2013 Aug 23.

Abstract

There have been considerable efforts to engineer three-dimensional (3D) microfluidic environments to enhance cellular function over conventional two-dimensional (2D) cultures in microfluidic chips, but few involve topographical features, such as micro/nano-grooves, which are beneficial for cell types of cardiac, skeletal and neuronal lineages. Here we have developed a cost-effective and scalable method to incorporate micro-topographical cues into microfluidic chips to induce cell alignment. Using commercially available optical media as molds for replica molding, we produced large surface areas of polydimethylsiloxane (PDMS) micro-grooved substrates and plasma-bonded them to multiple microfluidic chips. Besides aligning a 2D monolayer of cells, the micro-grooved substrate can align 3D cellular constructs on chip. C2C12 mouse myoblasts were cultured three-dimensionally in a microfluidic chip with incorporated PDMS micro-grooved substrate remodeled into an aligned 3D cellular construct, where the actin cytoskeleton and nuclei were preferentially oriented along the micro-grooves. Cells within the 3D cellular constructs can align without being in direct contact with the micro-grooves due to synergism between topography and fluid shear stress. Aligned C2C12 3D cellular constructs showed enhanced differentiation into skeletal muscles as compared to randomly aligned ones. This novel method enables the routine inclusion of micro-topographical cues into 2D or 3D microfluidic cultures to generate relevant physiological models for studying tissue morphogenesis and drug screening applications.

摘要

人们已经做出了相当大的努力来设计三维(3D)微流控环境,以增强细胞在微流控芯片中的功能,超越传统的二维(2D)培养,但很少涉及地形特征,例如微/纳米槽,这对心脏、骨骼和神经元谱系的细胞类型有益。在这里,我们开发了一种经济高效且可扩展的方法,将微地形特征纳入微流控芯片中以诱导细胞对齐。我们使用市售的光学媒体作为复制品模具进行复制成型,从而在大面积的聚二甲基硅氧烷(PDMS)微槽基板上进行生产,并将其等离子键合到多个微流控芯片上。除了对 2D 单层细胞进行对齐外,微槽基板还可以对芯片上的 3D 细胞结构进行对齐。C2C12 小鼠成肌细胞在带有 PDMS 微槽基板的微流控芯片中进行三维培养,该基板被改造成对齐的 3D 细胞结构,其中肌动蛋白细胞骨架和细胞核优先沿着微槽排列。由于地形和流体剪切力之间的协同作用,即使细胞不与微槽直接接触,它们也能在 3D 细胞结构中对齐。与随机对齐的细胞相比,对齐的 C2C12 3D 细胞结构显示出增强的向骨骼肌分化的能力。这种新方法可以将微地形特征常规地纳入 2D 或 3D 微流控培养中,以生成用于研究组织形态发生和药物筛选应用的相关生理模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验