Sterling Chemistry Laboratory, Yale University , P. O. Box 208107, New Haven, Connecticut 06520, United States.
Acc Chem Res. 2014 Jan 21;47(1):202-10. doi: 10.1021/ar400125a. Epub 2013 Aug 23.
The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to stereoselectively catalyze bromination of biaryl substrates. This procedure directly reveals the particular H-bond donor and acceptor groups that enforce the folded structure of the bare ion as well as provide contact points for noncovalent interaction with substrates. We then show how photochemical hole-burning involving only vibrational excitations can be used in a double-resonance mode to systematically disentangle overlapping spectra that arise when several conformers of a dipeptide are prepared in the ion source. Finally, we highlight our ability to systematically capture reaction intermediates and spectroscopically characterize their structures. Through this method, we can identify the pathway for water-network-mediated, proton-coupled transformation of nitrosonium, NO(+) to HONO, a key reaction controlling the cations present in the ionosphere. Through this work, we reveal the critical role played by water molecules occupying the second solvation shell around the ion, where they stabilize the emergent product ion in a fashion reminiscent of the solvent coordinate responsible for the barrier to charge transfer in solution. Looking to the future, we predict that the capture and characterization of fleeting intermediate complexes in the homogeneous catalytic activation of small molecules like water, alkanes, and CO2 is a likely avenue rich with opportunity.
在大分子分析中,质谱的使用是一项非常重要的技术,它使得对二级和三级蛋白质结构的高效鉴定成为可能。20 多年前,诺贝尔化学奖得主 John Fenn 和他的同事们通过开发将大分子量的物质从溶液中无损地直接提取到气相中的方法,彻底改变了质谱学。反过来,这一进展又使得通过串联质谱对生物聚合物进行快速测序成为可能,这是蓬勃发展的蛋白质组学领域的核心。在这篇综述中,我们讨论了如何通过低温冷却、质量选择和反应性处理来共同提供一种强大的方法来表征离子结构,并合理合成不稳定的反应中间体。这是通过首先将离子冷却到接近 10 K,并在其上凝结弱结合的、化学惰性的小分子或稀有气体原子来实现的。然后,这个组装体可以作为一个介质,通过快速蒸发加合物来猝灭反应性碰撞,同时提供一种通用的方法,通过光诱导质量损失来获得嵌入物种的高分辨率振动作用光谱。此外,由于吸收一个光子就足以诱导蒸发,因此可以使用易于获得的、广泛可调谐的脉冲红外激光器来获得光谱测量。我们讨论了这些方法的实现,使用了一种涉及两级质量选择和两个激光激发区域与低温离子源接口的新型混合光解碎片质谱仪。我们通过介绍最近在多肽、仿生催化剂、大抗生素分子(万古霉素)和与电离层化学有关的反应中间体方面的应用,展示了低温离子光谱仪的几种功能。首先,我们展示了如何使用特定位置的同位素取代来鉴定设计为立体选择性地催化联芳基底物溴化的质子化三肽中局部官能团的带。该程序直接揭示了特定的氢键供体和受体基团,这些基团强制形成了裸离子的折叠结构,并提供了与底物非共价相互作用的接触点。然后,我们展示了如何在双共振模式下使用仅涉及振动激发的光化学孔烧蚀来系统地解开当在离子源中制备二肽的几个构象时出现的重叠光谱。最后,我们强调了我们系统地捕获反应中间体并对其结构进行光谱表征的能力。通过这种方法,我们可以识别出在水网络介导的质子偶联转化过程中,亚硝酰(NO(+))到 HONO 的反应途径,这是控制电离层中存在的阳离子的关键反应。通过这项工作,我们揭示了水分子在离子周围的第二溶剂化壳中所起的关键作用,它们以类似于溶液中电荷转移障碍的溶剂配位的方式稳定了新兴产物离子。展望未来,我们预测在小分子(如水、烷烃和 CO2)的均相催化活化中捕获和表征短暂的中间配合物是一个充满机遇的可能途径。