Costa Judite, Fu Chuanhai, Syrovatkina Viktoriya, Tran Phong T
Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Methods Cell Biol. 2013;115:385-94. doi: 10.1016/B978-0-12-407757-7.00024-4.
Microtubules exhibit dynamic instability, stochastically switching between infrequent phases of growth and shrinkage. In the cell, microtubule dynamic instability is further modulated by microtubule-associated proteins and motors, which are specifically tuned to cell cycle stages. For example, mitotic microtubules are more dynamic than interphase microtubules. The different parameters of microtubule dynamics can be measured from length versus time data, which are generally obtained from time-lapse acquisition using the optical microscope. The typical maximum resolution of the optical microscope is ~λ/2 or ~300 nm. This scale represents a challenge for imaging fission yeast microtubule dynamics specifically during early mitosis, where the bipolar mitotic spindle contains many short dynamic microtubules of ~1-μm scale. Here, we present a novel method to image short fission yeast mitotic microtubules. The method uses the thermosensitive reversible kinesin-5 cut7.24(ts) to create monopolar spindles, where asters of individual mitotic microtubules are presented for imaging and subsequent analysis.
微管表现出动态不稳定性,在不频繁的生长和收缩阶段之间随机切换。在细胞中,微管动态不稳定性进一步受到微管相关蛋白和马达的调节,这些蛋白和马达会根据细胞周期阶段进行特异性调节。例如,有丝分裂微管比间期微管更具动态性。微管动力学的不同参数可以从长度与时间的数据中测量得到,这些数据通常通过光学显微镜的延时采集获得。光学显微镜的典型最大分辨率约为λ/2或约300纳米。这个尺度对于成像裂殖酵母微管动力学来说是一个挑战,特别是在有丝分裂早期,此时双极有丝分裂纺锤体包含许多约1微米尺度的短动态微管。在这里,我们提出了一种成像裂殖酵母短有丝分裂微管的新方法。该方法使用热敏可逆驱动蛋白-5 cut7.24(ts)来创建单极纺锤体,其中单个有丝分裂微管的星状体被呈现用于成像和后续分析。