Suppr超能文献

抑制分析揭示,在. 中,MAPs 和微管动力学与 Cut7/驱动蛋白-5 马达一起平衡有丝分裂纺锤体的组装。

Suppressor Analysis Uncovers That MAPs and Microtubule Dynamics Balance with the Cut7/Kinesin-5 Motor for Mitotic Spindle Assembly in .

机构信息

Hiroshima Research Center for Healthy Aging

Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.

出版信息

G3 (Bethesda). 2019 Jan 9;9(1):269-280. doi: 10.1534/g3.118.200896.

Abstract

The Kinesin-5 motor Cut7 in plays essential roles in spindle pole separation, leading to the assembly of bipolar spindle. In many organisms, simultaneous inactivation of Kinesin-14s neutralizes Kinesin-5 deficiency. To uncover the molecular network that counteracts Kinesin-5, we have conducted a genetic screening for suppressors that rescue the temperature sensitive mutation, and identified 10 loci. Next generation sequencing analysis reveals that causative mutations are mapped in genes encoding α-, β-tubulins and the microtubule plus-end tracking protein Mal3/EB1, in addition to the components of the Pkl1/Kinesin-14 complex. Moreover, the deletion of various genes required for microtubule nucleation/polymerization also suppresses the mutant. Intriguingly, Klp2/Kinesin-14 levels on the spindles are significantly increased in mutants, whereas these increases are negated by suppressors, which may explain the suppression by these mutations/deletions. Consistent with this notion, mild overproduction of Klp2 in these double mutant cells confers temperature sensitivity. Surprisingly, treatment with a microtubule-destabilizing drug not only suppresses temperature sensitivity but also rescues the lethality resulting from the deletion of , though a single deletion cannot compensate for the loss of Cut7. We propose that microtubule assembly and/or dynamics antagonize Cut7 functions, and that the orchestration between these two factors is crucial for bipolar spindle assembly.

摘要

动力蛋白-5 马达 Cut7 在纺锤体极分离中发挥重要作用,导致双极纺锤体的组装。在许多生物体中,同时失活 Kinesin-14 可以中和 Kinesin-5 的缺乏。为了揭示对抗 Kinesin-5 的分子网络,我们进行了遗传筛选,以寻找拯救 温度敏感突变的抑制子,并鉴定了 10 个基因座。下一代测序分析表明,引起突变的基因定位于编码 α-、β-微管蛋白和微管末端追踪蛋白 Mal3/EB1 的基因中,除了 Pkl1/Kinesin-14 复合物的成分外。此外,微管成核/聚合所需的各种基因的缺失也能抑制 突变体。有趣的是,在 突变体中,Klp2/Kinesin-14 水平在纺锤体上显著增加,而这些增加被抑制子否定,这可能解释了这些突变/缺失的抑制作用。与这一观点一致,在这些双突变细胞中轻度过表达 Klp2 会导致温度敏感性。令人惊讶的是,用微管不稳定药物处理不仅能抑制 温度敏感性,还能挽救因 缺失而导致的致死性,尽管单个 缺失不能补偿 Cut7 的缺失。我们提出,微管组装和/或动力学拮抗 Cut7 的功能,而这两个因素之间的协调对双极纺锤体的组装至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5859/6325904/8b1adc58a611/269f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验