Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
Mol Biol Cell. 2017 Dec 1;28(25):3647-3659. doi: 10.1091/mbc.E17-08-0497. Epub 2017 Oct 11.
Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end-directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end-directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.
准确的染色体分离依赖于双极有丝分裂纺锤体。在许多真核生物中,纺锤体的形成是由正向驱动的马达蛋白 kinesin-5 驱动的,该蛋白产生向外的力以建立纺锤体的双极。其抑制导致有丝分裂停滞的单极纺锤体的出现。有趣的是,在许多系统中,同时抑制负向驱动的马达蛋白 kinesin-14 会恢复纺锤体的双极性。在这里,我们表明在裂殖酵母中,在没有 kinesin-5/Cut7 和 kinesin-14/Pkl1 的情况下,有三种独立的途径有助于纺锤体的双极性。一种是 kinesin-6/Klp9,它在短双极纺锤体组装后参与纺锤体的伸长。Klp9 还确保了后期纺锤体的中定位,以防止染色体不均匀分离。另一种是 Alp7/TACC-Alp14/TOG 微管聚合酶复合物。温度敏感的 突变体停滞在单极或极短的纺锤体中。将 Alp14 强制靶向纺锤体极体足以使 三重缺失细胞存活并促进纺锤体组装,表明 Alp14 介导的微管聚合从纺锤体极体的核面可以产生向外的力来替代早期有丝分裂期间的 Cut7。第三种途径涉及 Ase1/PRC1 微管交联器,它稳定了对向微管。因此,我们的研究揭示了导致有丝分裂双极纺锤体组装的依赖和不依赖于驱动蛋白的途径之间的多方面相互作用。