Suppr超能文献

带复发的疟疾模型的快、慢动力学。

Fast and slow dynamics of malaria model with relapse.

机构信息

Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, PR China.

出版信息

Math Biosci. 2013 Nov;246(1):94-104. doi: 10.1016/j.mbs.2013.08.004. Epub 2013 Aug 21.

Abstract

Two mathematical models of malaria with relapse are studied. When the vector population size is constant, complete analyses of the dynamics are conducted. The geometric singular perturbation theory is used to analyze the full dynamics. On the critical manifold, from next generation matrix method, we obtain the basic reproduction number. The global stability of disease-free equilibrium and the uniformly persistence of malaria have also been analyzed. While the vector population size is variable, the basic reproduction number and the stability of disease-free as well as the malaria-infected equilibrium have been obtained in a similar way. Some numerical simulations are also given.

摘要

研究了具有复发的两种疟疾数学模型。当媒介种群数量保持不变时,对动力学进行了完整分析。利用几何奇异摄动理论分析了完整的动力学。在临界流形上,通过下一代矩阵方法,我们得到了基本再生数。还分析了无病平衡点和疟疾持久性的全局稳定性。当媒介种群数量变化时,通过类似的方法得到了基本再生数和无病以及疟疾感染平衡点的稳定性。还给出了一些数值模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验