Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
Plant Cell. 2013 Aug;25(8):3079-88. doi: 10.1105/tpc.113.112193. Epub 2013 Aug 23.
Pentatricopeptide repeat (PPR) proteins bind RNA and act in multiple eukaryotic processes, including RNA editing, RNA stability, and translation. Here, we investigated the mechanism underlying the functional versatility of Arabidopsis thaliana proton gradient regulation3 (PGR3), a chloroplast protein harboring 27 PPR motifs. Previous studies suggested that PGR3 acts in (1) stabilization of photosynthetic electron transport L (petL) operon RNA, (2) translation of petL, and (3) translation of ndhA. We showed here that replacement of the 4th amino acid of the 12th PPR with nonpolar or charged amino acids abolished functions (1) and (2) but not (3) of PGR3 by compromising the function of this specific PPR. This discovery enabled us to knock out the RNA binding ability of individual PPR motifs. Consequently, we showed that the 16 N-terminal PPRs were sufficient for function (1) via sequence-specific RNA binding, whereas the 11 C-terminal motifs were essential for functions (2) and (3) by activating translation. We also clarified that the 14th amino acid of the 12th PPR should be positively charged to make the PPR functionally active. Our finding opens up the possibility of selectively manipulating the functions of PPR proteins.
五肽重复(PPR)蛋白结合 RNA 并在多种真核生物过程中发挥作用,包括 RNA 编辑、RNA 稳定性和翻译。在这里,我们研究了拟南芥质体蛋白质子梯度调节 3(PGR3)的功能多样性的机制,该蛋白含有 27 个 PPR 基序。先前的研究表明,PGR3 作用于 (1) 稳定光合电子传递 L(petL)操纵子 RNA,(2) petL 的翻译和 (3) ndhA 的翻译。我们在这里表明,用非极性或带电荷的氨基酸替换第 12 个 PPR 的第 4 个氨基酸会破坏 PGR3 的功能 (1) 和 (2),但不会破坏 (3),因为这会影响该特定 PPR 的功能。这一发现使我们能够敲除单个 PPR 基序的 RNA 结合能力。因此,我们表明,16 个 N 端 PPR 通过序列特异性 RNA 结合足以发挥功能 (1),而 11 个 C 端基序通过激活翻译对功能 (2) 和 (3) 至关重要。我们还澄清了第 12 个 PPR 的第 14 个氨基酸应该带正电荷,以使 PPR 具有功能活性。我们的发现为选择性操纵 PPR 蛋白的功能开辟了可能性。