J. M. Kowalchuk: Canadian Centre for Activity and Aging, School of Kinesiology, Arthur and Sonia Labatt Health Sciences Building, Room 411C, The University of Western Ontario, London, Ontario, Canada N6A 5B9.
Exp Physiol. 2013 Dec;98(12):1668-82. doi: 10.1113/expphysiol.2013.074021. Epub 2013 Aug 23.
Pulmonary O2 uptake (V(O₂p)) and leg blood flow (LBF) kinetics were examined at the onset of moderate-intensity exercise, during hyperventilation with and without associated hypocapnic alkalosis. Seven male subjects (25 ± 6 years old; mean ± SD) performed alternate-leg knee-extension exercise from baseline to moderate-intensity exercise (80% of estimated lactate threshold) and completed four to six repetitions for each of the following three conditions: (i) control [CON; end-tidal partial pressure of CO2 (P(ET, CO₂)) 40 mmHg], i.e. normal breathing with normal inspired CO2 (0.03%); (ii) hypocapnia (HYPO; P(ET, CO₂) ~20 mmHg), i.e. sustained hyperventilation with normal inspired CO2 (0.03%); and (iii) normocapnia (NORMO; P(ET, CO₂) ~40 mmHg), i.e. sustained hyperventilation with elevated inspired CO2 (5%). The V(O₂p) was measured breath by breath using mass spectrometry and a volume turbine. Femoral artery mean blood velocity was measured by Doppler ultrasound, and LBF was calculated from femoral artery diameter and mean blood velocity. Phase 2 V(O₂p) kinetics (τV(O₂p)) was different (P < 0.05) amongst all three conditions (CON, 19 ± 7 s; HYPO, 43 ± 17 s; and NORMO, 30 ± 8 s), while LBF kinetics (τLBF) was slower (P < 0.05) in HYPO (31 ± 9 s) compared with both CON (19 ± 3 s) and NORMO (20 ± 6 s). Similar to previous findings, HYPO was associated with slower V(O₂p) and LBF kinetics compared with CON. In the present study, preventing the fall in end-tidal P(CO₂) (NORMO) restored LBF kinetics, but not V(O₂p) kinetics, which remained 'slowed' relative to CON. These data suggest that the hyperventilation manoeuvre itself (i.e. independent of induced hypocapnic alkalosis) may contribute to the slower V(O₂p) kinetics observed during HYPO.
在开始进行中等强度运动时,检查了肺 O2 摄取量(V(O₂p))和腿部血流(LBF)动力学,在此期间进行了过度通气,同时伴有或不伴有低碳酸血症性碱中毒。7 名男性受试者(25 ± 6 岁;平均值 ± 标准差)从基线到中等强度运动(80%估计的乳酸阈)进行交替腿伸膝运动,并完成了以下三种情况中的每一种的四到六次重复:(i)对照[CON;呼气末二氧化碳分压(P(ET,CO₂))40mmHg],即正常呼吸和正常吸入的 CO2(0.03%);(ii)低碳酸血症(HYPO;P(ET,CO₂)20mmHg),即持续过度通气和正常吸入的 CO2(0.03%);和(iii)正常碳酸血症(NORMO;P(ET,CO₂)40mmHg),即持续过度通气和吸入的 CO2 升高(5%)。V(O₂p)使用质谱仪和体积涡轮机逐口气测量。股动脉平均血流速度通过多普勒超声测量,股动脉直径和平均血流速度计算 LBF。所有三种条件(CON、19 ± 7s;HYPO、43 ± 17s 和 NORMO、30 ± 8s)的 V(O₂p)动力学(τV(O₂p))不同(P<0.05),而 LBF 动力学(τLBF)在 HYPO(31 ± 9s)中较慢(P<0.05)与 CON(19 ± 3s)和 NORMO(20 ± 6s)相比。与先前的发现类似,与 CON 相比,HYPO 与较慢的 V(O₂p)和 LBF 动力学相关。在本研究中,防止呼气末 P(CO₂)下降(NORMO)恢复了 LBF 动力学,但 V(O₂p)动力学没有恢复,与 CON 相比仍然“较慢”。这些数据表明,过度通气本身(即与诱导的低碳酸血症性碱中毒无关)可能导致 HYPO 期间观察到的较慢的 V(O₂p)动力学。