3Department of Environmental and Molecular Toxicology, Oregon State University, 28645 East HWY 34. Corvallis, OR 97333, USA.
FASEB J. 2013 Dec;27(12):4866-76. doi: 10.1096/fj.12-225524. Epub 2013 Aug 23.
Retinoic acid (RA) is involved in multifarious and complex functions necessary for vertebrate development. RA signaling is reliant on strict enzymatic regulation of RA synthesis and metabolism. Improper spatiotemporal expression of RA during development can result in vertebrate axis defects. microRNAs (miRNAs) are also pivotal in orchestrating developmental processes. While mechanistic links between miRNAs and axial development are established, the role of miRNAs in regulating metabolic enzymes responsible for RA abundance during axis formation has yet to be elucidated. Our results uncovered a role of miR-19 family members in controlling RA metabolism through the regulation of CYP26A1 during vertebrate axis formation. Global miRNA expression profiling showed that developmental RA exposure suppressed the expression of miR-19 family members during zebrafish somitogenesis. A reporter assay confirmed that cyp26a1 is a bona fide target of miR-19 in vivo. Transient knockdown of miR-19 phenocopied axis defects caused by RA exposure. Exogenous miR-19 rescued the axis defects induced by RA exposure. Taken together, these results indicate that the teratogenic effects of RA exposure result, in part, from repression of miR-19 expression and subsequent misregulation of cyp26a1. This highlights a previously unidentified role of miR-19 in facilitating vertebrate axis development via regulation of RA signaling.
视黄酸(RA)参与脊椎动物发育所必需的多种复杂功能。RA 信号依赖于 RA 合成和代谢的严格酶调控。发育过程中 RA 的时空表达不当可导致脊椎动物轴缺陷。microRNAs(miRNAs)在协调发育过程中也起着关键作用。虽然已经确定了 miRNAs 与轴发育之间的机制联系,但 miRNAs 在调节负责 RA 丰度的代谢酶方面在轴形成中的作用尚未阐明。我们的研究结果揭示了 miR-19 家族成员在通过调节脊椎动物轴形成过程中的 CYP26A1 来控制 RA 代谢中的作用。全局 miRNA 表达谱分析显示,发育性 RA 暴露在斑马鱼体节形成过程中抑制了 miR-19 家族成员的表达。报告基因实验证实 cyp26a1 是体内 miR-19 的真正靶标。miR-19 的瞬时敲低可模拟 RA 暴露引起的轴缺陷。外源性 miR-19 可挽救 RA 暴露引起的轴缺陷。综上所述,这些结果表明,RA 暴露的致畸作用部分是由于 miR-19 表达的抑制以及随后 cyp26a1 的失调所致。这突出了 miR-19 通过调节 RA 信号在促进脊椎动物轴发育中的先前未被识别的作用。