Suppr超能文献

将新的与图式一致的信息的快速新皮质学习纳入互补学习系统理论中。

Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory.

机构信息

Department of Psychology, Stanford University.

出版信息

J Exp Psychol Gen. 2013 Nov;142(4):1190-1210. doi: 10.1037/a0033812. Epub 2013 Aug 26.

Abstract

The complementary learning systems theory of the roles of hippocampus and neocortex (McClelland, McNaughton, & O'Reilly, 1995) holds that the rapid integration of arbitrary new information into neocortical structures is avoided to prevent catastrophic interference with structured knowledge representations stored in synaptic connections among neocortical neurons. Recent studies (Tse et al., 2007, 2011) showed that neocortical circuits can rapidly acquire new associations that are consistent with prior knowledge. The findings challenge the complementary learning systems theory as previously presented. However, new simulations extending those reported in McClelland et al. (1995) show that new information that is consistent with knowledge previously acquired by a putatively cortexlike artificial neural network can be learned rapidly and without interfering with existing knowledge; it is when inconsistent new knowledge is acquired quickly that catastrophic interference ensues. Several important features of the findings of Tse et al. (2007, 2011) are captured in these simulations, indicating that the neural network model used in McClelland et al. has characteristics in common with neocortical learning mechanisms. An additional simulation generalizes beyond the network model previously used, showing how the rate of change of cortical connections can depend on prior knowledge in an arguably more biologically plausible network architecture. In sum, the findings of Tse et al. are fully consistent with the idea that hippocampus and neocortex are complementary learning systems. Taken together, these findings and the simulations reported here advance our knowledge by bringing out the role of consistency of new experience with existing knowledge and demonstrating that the rate of change of connections in real and artificial neural networks can be strongly prior-knowledge dependent.

摘要

互补学习系统理论认为,海马体和新皮层的作用(McClelland、McNaughton 和 O'Reilly,1995),避免了将任意新信息快速整合到新皮层结构中,以防止与存储在新皮层神经元之间突触连接中的结构化知识表示发生灾难性干扰。最近的研究(Tse 等人,2007 年,2011 年)表明,新皮层电路可以快速获得与先前知识一致的新关联。这些发现挑战了之前提出的互补学习系统理论。然而,新的模拟扩展了 McClelland 等人报告的模拟(1995 年),表明与先前通过假定的皮质样人工神经网络获得的知识一致的新信息可以快速学习,而不会干扰现有知识;只有当快速获得不一致的新知识时,才会发生灾难性干扰。Tse 等人的研究结果的几个重要特征(2007 年,2011 年)在这些模拟中得到了捕捉,表明 McClelland 等人使用的神经网络模型具有与新皮层学习机制共同的特征。另一个模拟超越了之前使用的网络模型,展示了皮质连接的变化率如何取决于先前的知识,这在一种更具生物学合理性的网络架构中是可以想象的。总之,Tse 等人的研究结果完全符合海马体和新皮层是互补学习系统的观点。总之,这些发现和这里报告的模拟通过突出新经验与现有知识的一致性的作用,以及证明真实和人工神经网络中连接的变化率可以强烈依赖于先前的知识,从而推进了我们的知识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验