Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
Plant Physiol. 2013 Oct;163(2):929-45. doi: 10.1104/pp.113.225987. Epub 2013 Aug 26.
Gibberellins (GAs) are key modulators of plant growth and development. PsGA3ox1 (LE) encodes a GA 3β-hydroxylase that catalyzes the conversion of GA20 to biologically active GA1. To further clarify the role of GA3ox expression during pea (Pisum sativum) plant growth and development, we generated transgenic pea lines (in a lele background) with cauliflower mosaic virus-35S-driven expression of PsGA3ox1 (LE). PsGA3ox1 transgene expression led to higher GA1 concentrations in a tissue-specific and development-specific manner, altering GA biosynthesis and catabolism gene expression and plant phenotype. PsGA3ox1 transgenic plants had longer internodes, tendrils, and fruits, larger stipules, and displayed delayed flowering, increased apical meristem life, and altered vascular development relative to the null controls. Transgenic PsGA3ox1 overexpression lines were then compared with lines where endogenous PsGA3ox1 (LE) was introduced, by a series of backcrosses, into the same genetic background (BC LEle). Most notably, the BC LEle plants had substantially longer internodes containing much greater GA1 levels than the transgenic PsGA3ox1 plants. Induction of expression of the GA deactivation gene PsGA2ox1 appears to make an important contribution to limiting the increase of internode GA1 to modest levels for the transgenic lines. In contrast, PsGA3ox1 (LE) expression driven by its endogenous promoter was coordinated within the internode tissue to avoid feed-forward regulation of PsGA2ox1, resulting in much greater GA1 accumulation. These studies further our fundamental understanding of the regulation of GA biosynthesis and catabolism at the tissue and organ level and demonstrate that the timing/localization of GA3ox expression within an organ affects both GA homeostasis and GA1 levels, and thereby growth.
赤霉素(GAs)是植物生长和发育的关键调节剂。PsGA3ox1(LE)编码一种 GA 3β-羟化酶,它催化 GA20 转化为具有生物活性的 GA1。为了进一步阐明 GA3ox 表达在豌豆(Pisum sativum)植物生长和发育过程中的作用,我们生成了在拟南芥中过表达 PsGA3ox1(LE)的转基因豌豆系(在 lele 背景下),由花椰菜花叶病毒 35S 驱动。PsGA3ox1 转基因的表达以组织特异性和发育特异性的方式导致 GA1 浓度升高,改变了 GA 生物合成和分解代谢基因的表达和植物表型。PsGA3ox1 转基因植物的节间、卷须和果实较长,托叶较大,开花延迟,顶端分生组织寿命增加,血管发育改变,与空载体对照相比。然后,将转基因 PsGA3ox1 过表达系与通过一系列回交引入相同遗传背景(BC LEle)的内源 PsGA3ox1(LE)的系进行比较。值得注意的是,BC LEle 植物的节间明显更长,含有比转基因 PsGA3ox1 植物更高水平的 GA1。GA 失活基因 PsGA2ox1 的表达诱导似乎对限制转基因系中节间 GA1 的增加到适度水平做出了重要贡献。相比之下,由其内源启动子驱动的 PsGA3ox1(LE)表达在节间组织内协调,以避免对 PsGA2ox1 的前馈调节,导致 GA1 积累更多。这些研究进一步加深了我们对组织和器官水平 GA 生物合成和分解代谢调节的基本理解,并表明 GA3ox 在器官内的表达时间/定位会影响 GA 动态平衡和 GA1 水平,从而影响生长。