Ayele Belay T, Ozga Jocelyn A, Kurepin Leonid V, Reinecke Dennis M
Plant Physiology and Molecular Biology Research Group, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
Plant Physiol. 2006 Nov;142(3):1267-81. doi: 10.1104/pp.106.086199. Epub 2006 Sep 29.
The expression patterns of five genes (PsGA20ox1, PsGA20ox2, PsGA3ox1, PsGA2ox1, and PsGA2ox2) encoding five regulatory gibberellin (GA) biosynthesis enzymes (two GA 20-oxidases, a GA 3beta-hydroxylase, and two GA 2beta-hydroxylases) were examined to gain insight into how these genes coordinate GA biosynthesis during germination and early postgermination stages of the large-seeded dicotyledonous plant pea (Pisum sativum). At the time the developing embryo fills the seed coat, high mRNA levels of PsGA20ox2 (primarily responsible for conversion of C20-GAs to GA(20)), PsGA2ox1 (primarily responsible for conversion of GA(20) to GA(29)), and PsGA2ox2 (primarily responsible for conversion of GA(1) to GA(8)) were detected in the seeds, along with high GA(20) and GA(29) levels, the enzymatic products of these genes. Embryo maturation was accompanied by a large reduction in PsGA20ox2 and PsGA2ox1 mRNA and lower GA(20) and GA(29) levels. However, PsGA2ox2 transcripts remained high. Following seed imbibition, GA(20) levels in the cotyledons decreased, while PsGA3ox1 mRNA and GA(1) levels increased, implying that GA(20) was being used for de novo synthesis of GA(1). The presence of the embryo axis was required for stimulation of cotyledonary GA(1) synthesis at the mRNA and enzyme activity levels. As the embryo axis doubled in size, PsGA20ox1 and PsGA3ox1 transcripts increased, both GA(1) and GA(8) were detectable, PsGA2ox2 transcripts decreased, and PsGA2ox1 transcripts remained low. Cotyledonary-, root-, and shoot-specific expression of these GA biosynthesis genes and the resultant endogenous GA profiles support a key role for de novo GA biosynthesis in each organ during germination and early seedling growth of pea.
研究了编码五种赤霉素(GA)生物合成调节酶(两种GA 20-氧化酶、一种GA 3β-羟化酶和两种GA 2β-羟化酶)的五个基因(PsGA20ox1、PsGA20ox2、PsGA3ox1、PsGA2ox1和PsGA2ox2)的表达模式,以深入了解这些基因在大种子双子叶植物豌豆(Pisum sativum)萌发和萌发后早期阶段如何协调GA生物合成。在发育中的胚充满种皮时,在种子中检测到PsGA20ox2(主要负责将C20-GAs转化为GA(20))、PsGA2ox1(主要负责将GA(20)转化为GA(29))和PsGA2ox2(主要负责将GA(1)转化为GA(8))的高mRNA水平,以及这些基因的酶促产物GA(20)和GA(29)的高水平。胚成熟伴随着PsGA20ox2和PsGA2ox1 mRNA的大幅减少以及GA(20)和GA(29)水平的降低。然而,PsGA2ox2转录本仍然很高。种子吸胀后,子叶中的GA(20)水平下降,而PsGA3ox1 mRNA和GA(1)水平增加,这意味着GA(20)被用于GA(1)的从头合成。在mRNA和酶活性水平上,胚轴的存在是刺激子叶GA(1)合成所必需的。随着胚轴大小加倍,PsGA20ox1和PsGA3ox1转录本增加,GA(1)和GA(8)均可检测到,PsGA2ox2转录本减少,PsGA2ox1转录本保持低水平。这些GA生物合成基因在子叶、根和芽中的特异性表达以及由此产生的内源GA谱支持了从头GA生物合成在豌豆萌发和幼苗早期生长过程中每个器官中的关键作用。