Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Biomacromolecules. 2013 Sep 9;14(9):3010-6. doi: 10.1021/bm400447z. Epub 2013 Aug 27.
The precise spatial control of cell adhesion to surfaces is an endeavor that has enabled discoveries in cell biology and new possibilities in tissue engineering. The generation of cell-repellent surfaces currently requires advanced chemistry techniques and could be simplified. Here we show that mucins, glycoproteins of high structural and chemical complexity, spontaneously adsorb on hydrophobic substrates to form coatings that prevent the surface adhesion of mammalian epithelial cells, fibroblasts, and myoblasts. These mucin coatings can be patterned with micrometer precision using a microfluidic device, and are stable enough to support myoblast differentiation over seven days. Moreover, our data indicate that the cell-repellent effect is dependent on mucin-associated glycans because their removal results in a loss of effective cell-repulsion. Last, we show that a critical surface density of mucins, which is required to achieve cell-repulsion, is efficiently obtained on hydrophobic surfaces, but not on hydrophilic glass surfaces. However, this limitation can be overcome by coating glass with hydrophobic fluorosilane. We conclude that mucin biopolymers are attractive candidates to control cell adhesion on surfaces.
精确控制细胞与表面的黏附是一项具有重要意义的工作,它推动了细胞生物学领域的发现,并为组织工程带来了新的可能。目前,生成抗细胞黏附的表面需要先进的化学技术,而这一过程可以被简化。在这里,我们发现黏蛋白(一种具有高度结构和化学复杂性的糖蛋白)可自发吸附在疏水性基底上形成涂层,从而阻止哺乳动物上皮细胞、成纤维细胞和肌母细胞黏附在表面上。利用微流控装置,可以将这些黏蛋白涂层以微米级的精度进行图案化,而且其稳定性足以支持肌母细胞分化长达 7 天。此外,我们的数据表明,这种抗细胞黏附的效果取决于黏蛋白相关的糖链,因为去除这些糖链会导致其丧失有效的抗细胞黏附作用。最后,我们发现,在疏水性表面上,可以有效地获得实现抗细胞黏附所需的、具有临界表面密度的黏蛋白,但在亲水性玻璃表面上则无法获得。然而,通过在玻璃表面涂覆疏水性氟硅烷,可以克服这一限制。我们的结论是,黏蛋白生物聚合物是控制表面细胞黏附的有吸引力的候选物。