Chemical Engineering Area, University of Almería, 04120 Almería, Spain.
Chemical Engineering Area, University of Almería, 04120 Almería, Spain.
Bioresour Technol. 2013 Oct;146:682-688. doi: 10.1016/j.biortech.2013.07.141. Epub 2013 Aug 6.
This study examines the use of artificial neural networks as predictive tools for the growth of the dinoflagellate microalga Protoceratium reticulatum. Feed-forward back-propagation neural networks (FBN), using Levenberg-Marquardt back-propagation or Bayesian regularization as training functions, offered the best results in terms of representing the nonlinear interactions among all nutrients in a culture medium containing 26 different components. A FBN configuration of 26-14-1 layers was selected. The FBN model was trained using more than 500 culture experiments on a shake flask scale. Garson's algorithm provided a valuable means of evaluating the relative importance of nutrients in terms of microalgal growth. Microelements and vitamins had a significant importance (approximately 70%) in relation to macronutrients (nearly 25%), despite their concentrations in the culture medium being various orders of magnitude smaller. The approach presented here may be useful for modelling multi-nutrient interactions in photobioreactors.
本研究考察了人工神经网络作为预测工具在甲藻微藻原甲藻生长中的应用。前馈反向传播神经网络(FBN),使用 Levenberg-Marquardt 反向传播或贝叶斯正则化作为训练函数,在表示培养基中 26 种不同成分之间的所有营养物的非线性相互作用方面提供了最佳结果。选择了一个 26-14-1 层的 FBN 配置。该 FBN 模型使用摇瓶规模上的 500 多个培养实验进行了训练。Garson 的算法提供了一种有价值的方法,可根据微藻生长来评估营养物的相对重要性。微量元素和维生素的重要性(约 70%)与大量元素(近 25%)相当,尽管它们在培养基中的浓度相差几个数量级。这里提出的方法可能对光生物反应器中多营养物相互作用的建模有用。