Ray and Stephanie Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15686-91. doi: 10.1073/pnas.1303236110. Epub 2013 Aug 28.
The regulation of gene expression in cells, including by microRNAs (miRNAs), is a dynamic process. Current methods for identifying miRNA targets by combining sequence and miRNA and mRNA expression data do not adequately use the temporal information and thus miss important miRNAs and their targets. We developed the MIRna Dynamic Regulatory Events Miner (mirDREM), a probabilistic modeling method that uses input-output hidden Markov models to reconstruct dynamic regulatory networks that explain how temporal gene expression is jointly regulated by miRNAs and transcription factors. We measured miRNA and mRNA expression for postnatal lung development in mice and used mirDREM to study the regulation of this process. The reconstructed dynamic network correctly identified known miRNAs and transcription factors. The method has also provided predictions about additional miRNAs regulating this process and the specific developmental phases they regulate, several of which were experimentally validated. Our analysis uncovered links between miRNAs involved in lung development and differentially expressed miRNAs in idiopathic pulmonary fibrosis patients, some of which we have experimentally validated using proliferation assays. These results indicate that some disease progression pathways in idiopathic pulmonary fibrosis may represent partial reversal of lung differentiation.
细胞中基因表达的调控,包括 microRNAs(miRNAs)的调控,是一个动态的过程。目前,通过结合序列和 miRNA 及 mRNA 表达数据来识别 miRNA 靶标的方法没有充分利用时间信息,因此错过了重要的 miRNA 及其靶标。我们开发了 MIRna Dynamic Regulatory Events Miner(mirDREM),这是一种概率建模方法,它使用输入-输出隐马尔可夫模型来重建动态调控网络,解释 miRNA 和转录因子如何共同调控基因表达的时间动态。我们对小鼠出生后肺发育过程中的 miRNA 和 mRNA 表达进行了测量,并使用 mirDREM 来研究这个过程的调控。重建的动态网络正确地识别了已知的 miRNA 和转录因子。该方法还对调控这一过程的其他 miRNA 及其调控的特定发育阶段进行了预测,其中有几个已经通过实验验证。我们的分析揭示了参与肺发育的 miRNA 与特发性肺纤维化患者中差异表达的 miRNA 之间的联系,我们已经使用增殖实验对其中一些进行了实验验证。这些结果表明,特发性肺纤维化中的一些疾病进展途径可能代表肺分化的部分逆转。