Arathorn David W, Stevenson Scott B, Yang Qiang, Tiruveedhula Pavan, Roorda Austin
Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, USA.
J Vis. 2013 Aug 29;13(10):22. doi: 10.1167/13.10.22.
Eye motion, even during fixation, results in constant motion of the image of the world on our retinas. Vision scientists have long sought to understand the process by which we perceive the stable parts of the world as unmoving despite this instability and perceive the moving parts with realistic motion. We used an instrument capable of delivering visual stimuli with controlled motion relative to the retina at cone-level precision while capturing the subjects' percepts of stimulus motion with a matching task. We found that the percept of stimulus motion is more complex than conventionally thought. Retinal stimuli that move in a direction that is consistent with eye motion (i.e., opposite eye motion) appear stable even if the magnitude of that motion is amplified. The apparent stabilization diminishes for stimulus motions increasingly inconsistent with eye motion direction. Remarkably, we found that this perceived direction-contingent stabilization occurs separately for each separately moving pattern on the retina rather than for the image as a whole. One consequence is that multiple patterns that move at different rates relative to each other in the visual input are perceived as immobile with respect to each other, thereby disrupting our hyperacute sensitivity to target motion against a frame of reference. This illusion of relative stability has profound implications regarding the underlying visual mechanisms. Functionally, the system compensates retinal slip induced by eye motion without requiring an extremely precise optomotor signal and, at the same time, retains an exquisite sensitivity to an object's true motion in the world.
即使在注视过程中,眼球运动也会导致视网膜上的世界图像不断移动。长期以来,视觉科学家一直试图了解这样一个过程:尽管存在这种不稳定性,我们如何将世界的稳定部分感知为静止不动,以及如何以逼真的运动感知运动部分。我们使用了一种仪器,该仪器能够以锥体细胞水平的精度提供相对于视网膜具有可控运动的视觉刺激,同时通过匹配任务捕捉受试者对刺激运动的感知。我们发现,对刺激运动的感知比传统认为的更为复杂。沿与眼球运动一致的方向(即与眼球运动方向相反)移动的视网膜刺激即使其运动幅度被放大,看起来也是稳定的。对于与眼球运动方向越来越不一致的刺激运动,这种明显的稳定效果会减弱。值得注意的是,我们发现这种与方向相关的感知稳定是针对视网膜上每个单独移动的图案分别发生的,而不是针对整个图像。一个结果是,在视觉输入中以不同速率相对彼此移动的多个图案相对于彼此被感知为不动,从而破坏了我们对相对于参照系的目标运动的超敏锐敏感性。这种相对稳定性的错觉对潜在的视觉机制具有深远影响。从功能上讲,该系统补偿了由眼球运动引起的视网膜滑动,而无需极其精确的视动信号,同时,对世界中物体的真实运动保持着敏锐的敏感性。