Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
DNA Repair (Amst). 2013 Nov;12(11):878-89. doi: 10.1016/j.dnarep.2013.07.008. Epub 2013 Aug 26.
Abasic sites in genomic DNA can be a significant source of mutagenesis in biological systems, including human cancers. Such mutagenesis requires translesion DNA synthesis (TLS) bypass of the abasic site by specialized DNA polymerases. The abasic site bypass specificity of TLS proteins had been studied by multiple means in vivo and in vitro, although the generality of the conclusions reached have been uncertain. Here, we introduce a set of yeast reporter strains for investigating the in vivo specificity of abasic site bypass at numerous random positions within chromosomal DNA. When shifted to 37°C, these strains underwent telomere uncapping and resection that exposed reporter genes within a long 3' ssDNA overhang. Human APOBEC3G cytosine deaminase was expressed to create uracils in ssDNA, which were excised by uracil-DNA N-glycosylase. During repair synthesis, error-prone TLS bypassed the resulting abasic sites. Because of APOBEC3G's strict motif specificity and the restriction of abasic site formation to only one DNA strand, this system provides complete information about the location of abasic sites that led to mutations. We recapitulated previous findings on the roles of REV1 and REV3. Further, we found that sequence context can strongly influence the relative frequency of A or C insertion. We also found that deletion of Pol32, a non-essential common subunit of Pols δ and ζ, resulted in residual low-frequency C insertion dependent on Rev1 catalysis. We summarize our results in a detailed model of the interplay between TLS components leading to error-prone bypass of abasic sites. Our results underscore the utility of this system for studying TLS bypass of many types of lesions within genomic DNA.
基因组 DNA 中的碱基可以成为生物系统(包括人类癌症)中诱变的重要来源。这种诱变需要专门的 DNA 聚合酶通过跨损伤 DNA 合成(TLS)绕过碱基。TLS 蛋白的碱基缺失旁路特异性已经通过体内和体外的多种方法进行了研究,尽管得出的结论的普遍性一直存在不确定性。在这里,我们引入了一组酵母报告菌株,用于研究染色体 DNA 中许多随机位置碱基缺失旁路的体内特异性。当这些菌株被转移到 37°C 时,它们经历了端粒去帽和切除,从而暴露出长 3' ssDNA 突出端内的报告基因。表达人 APOBEC3G 胞嘧啶脱氨酶以在 ssDNA 中产生尿嘧啶,尿嘧啶-DNA N-糖苷酶将其切除。在修复合成过程中,易错的 TLS 绕过了由此产生的碱基缺失。由于 APOBEC3G 的严格基序特异性和碱基缺失的形成仅限于一条 DNA 链,因此该系统提供了导致突变的碱基缺失位置的完整信息。我们重现了以前关于 REV1 和 REV3 作用的发现。此外,我们发现序列上下文可以强烈影响 A 或 C 插入的相对频率。我们还发现,Pol32 的缺失,Pols δ 和 ζ 的非必需共同亚基,导致依赖 Rev1 催化的残余低频 C 插入。我们在一个详细的模型中总结了我们的结果,该模型描述了 TLS 成分之间的相互作用,导致易错的碱基缺失旁路。我们的结果强调了该系统在研究基因组 DNA 中许多类型损伤的 TLS 旁路方面的实用性。