Computational and Systems Biology; John Innes Centre; Norwich Research Park; Norwich UK.
Sainsbury Laboratory; Cambridge University; Cambridge UK.
Plant Signal Behav. 2013 Nov;8(11):e26149. doi: 10.4161/psb.26149. Epub 2013 Aug 29.
The floral transition is a key decision during plant development. While different species have evolved diverse pathways to respond to different environmental cues to flower in the correct season, key properties such as irreversibility and robustness to fluctuating signals appear to be conserved. We have used mathematical modeling to demonstrate how minimal regulatory networks of core components are sufficient to capture these behaviors. Simplified models inevitably miss finer details of the biological system, yet they provide a tractable route to understanding the overall system behavior. We combined models with experimental data to qualitatively reproduce characteristics of the floral transition and to quantitatively scale the network to fit with available leaf numbers. Our study highlights the value of pursuing an iterative approach combining modeling with experimental work to capture key features of complex systems.
花发育是植物发育过程中的一个关键决策。虽然不同物种已经进化出不同的途径来响应不同的环境信号,以在正确的季节开花,但关键性质,如不可逆性和对波动信号的稳健性,似乎是保守的。我们使用数学建模来演示核心组件的最小调控网络如何足以捕获这些行为。简化模型不可避免地会忽略生物系统的更细微细节,但它们为理解整体系统行为提供了一个可行的途径。我们将模型与实验数据相结合,定性地再现了花发育转变的特征,并定量地调整网络以适应可用的叶片数量。我们的研究强调了结合建模和实验工作来捕捉复杂系统关键特征的迭代方法的价值。