Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom.
Plant Cell. 2013 Mar;25(3):820-33. doi: 10.1105/tpc.113.109355. Epub 2013 Mar 29.
During flowering, primordia on the flanks of the shoot apical meristem are specified to form flowers instead of leaves. Like many plants, Arabidopsis thaliana integrates environmental and endogenous signals to control the timing of reproduction. To study the underlying regulatory logic of the floral transition, we used a combination of modeling and experiments to define a core gene regulatory network. We show that FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) act through FD and FD PARALOG to regulate the transition. The major floral meristem identity gene LEAFY (LFY) directly activates FD, creating a positive feedback loop. This network predicts flowering behavior for different genotypes and displays key properties of the floral transition, such as signal integration and irreversibility. Furthermore, modeling suggests that the control of TFL1 is important to flexibly counterbalance incoming FT signals, allowing a pool of undifferentiated cells to be maintained despite strong differentiation signals in nearby cells. This regulatory system requires TFL1 expression to rise in proportion to the strength of the floral inductive signal. In this network, low initial levels of LFY or TFL1 expression are sufficient to tip the system into either a stable flowering or vegetative state upon floral induction.
在开花过程中,茎顶端分生组织侧芽原基被特化形成花朵而不是叶子。与许多植物一样,拟南芥整合环境和内源性信号来控制繁殖的时间。为了研究花发育转变的潜在调控逻辑,我们使用建模和实验相结合的方法来定义一个核心基因调控网络。我们表明,开花时间基因(FT)和终端花 1 基因(TFL1)通过 FD 和 FD 同源物来调控花发育转变。主要的花分生组织特征基因 LEAFY(LFY)直接激活 FD,形成正反馈回路。这个网络预测了不同基因型的开花行为,并显示了花发育转变的关键特性,如信号整合和不可逆性。此外,建模表明 TFL1 的控制对于灵活地抵消传入的 FT 信号是重要的,允许在附近细胞中存在强烈的分化信号的情况下,维持未分化细胞的池。这个调控系统需要 TFL1 的表达与花诱导信号的强度成比例地增加。在这个网络中,LFY 或 TFL1 表达的初始低水平足以使系统在花诱导时进入稳定的开花或营养生长状态。