Hartung Niklas
Aix-Marseille Université, CMI 39 rue Frédéric Joliot-Curie, 13453 , Marseille cedex 13, France,
J Math Biol. 2014 Jan;68(1-2):41-55. doi: 10.1007/s00285-013-0724-0. Epub 2013 Aug 30.
An ODE model introduced by Gyllenberg and Webb (Growth Develop Aging 53:25-33, 1989) describes tumour growth in terms of the dynamics between proliferating and quiescent cell states. The passage from one state to another and vice versa is modelled by two functions r0 and ri depending on the total tumour size. As these functions do not represent any observable quantities, they have to be identified from the observations. In this paper we show that there is an infinite number of pairs (r0, ri) corresponding to the same solution of the ODE system and the functions (r0, ri) will be classified in terms of this equivalence. Surprisingly, the technique used for this classification permits a uniqueness proof of the solution of the ODE model in a non-Lipschitz case. The reasoning can be widened to a more general setting including an extension of the Gyllenberg-Webb model with a nonlinear birth rate. The relevance of this result is discussed in a preclinical application scenario.
Gyllenberg和Webb(《生长发育与衰老》53:25 - 33,1989)提出的一个常微分方程(ODE)模型,从增殖细胞状态和静止细胞状态之间的动态关系描述了肿瘤生长。从一种状态到另一种状态以及反之的转变,由两个依赖于肿瘤总体大小的函数r0和ri建模。由于这些函数并不代表任何可观测的量,所以必须从观测值中确定它们。在本文中,我们表明存在无穷多个对应于ODE系统相同解的(r0, ri)对,并且函数(r0, ri)将根据这种等价关系进行分类。令人惊讶的是,用于这种分类的技术允许在非利普希茨(non-Lipschitz)情况下对ODE模型的解进行唯一性证明。该推理可以扩展到更一般的情形,包括具有非线性出生率的Gyllenberg-Webb模型的扩展。在临床前应用场景中讨论了这一结果的相关性。