Institutes for Molecular and Cellular Anatomy.
J Am Soc Nephrol. 2013 Nov;24(11):1830-48. doi: 10.1681/ASN.2012080788. Epub 2013 Aug 29.
Mutations of the LMX1B gene cause nail-patella syndrome, a rare autosomal-dominant disorder affecting the development of the limbs, eyes, brain, and kidneys. The characterization of conventional Lmx1b knockout mice has shown that LMX1B regulates the development of podocyte foot processes and slit diaphragms, but studies using podocyte-specific Lmx1b knockout mice have yielded conflicting results regarding the importance of LMX1B for maintaining podocyte structures. In order to address this question, we generated inducible podocyte-specific Lmx1b knockout mice. One week of Lmx1b inactivation in adult mice resulted in proteinuria with only minimal foot process effacement. Notably, expression levels of slit diaphragm and basement membrane proteins remained stable at this time point, and basement membrane charge properties also did not change, suggesting that alternative mechanisms mediate the development of proteinuria in these mice. Cell biological and biophysical experiments with primary podocytes isolated after 1 week of Lmx1b inactivation indicated dysregulation of actin cytoskeleton organization, and time-resolved DNA microarray analysis identified the genes encoding actin cytoskeleton-associated proteins, including Abra and Arl4c, as putative LMX1B targets. Chromatin immunoprecipitation experiments in conditionally immortalized human podocytes and gel shift assays showed that LMX1B recognizes AT-rich binding sites (FLAT elements) in the promoter regions of ABRA and ARL4C, and knockdown experiments in zebrafish support a model in which LMX1B and ABRA act in a common pathway during pronephros development. Our report establishes the importance of LMX1B in fully differentiated podocytes and argues that LMX1B is essential for the maintenance of an appropriately structured actin cytoskeleton in podocytes.
LMX1B 基因突变会导致指甲髌骨综合征,这是一种罕见的常染色体显性遗传病,影响四肢、眼睛、大脑和肾脏的发育。对常规 Lmx1b 基因敲除小鼠的特征描述表明,LMX1B 调节足细胞足突和裂孔隔膜的发育,但使用足细胞特异性 Lmx1b 基因敲除小鼠的研究对于 LMX1B 维持足细胞结构的重要性得出了相互矛盾的结果。为了解决这个问题,我们生成了诱导型足细胞特异性 Lmx1b 基因敲除小鼠。成年小鼠中 Lmx1b 失活 1 周会导致蛋白尿,仅出现轻微的足突消失。值得注意的是,此时裂孔隔膜和基底膜蛋白的表达水平仍然稳定,基底膜电荷特性也没有改变,这表明替代机制介导了这些小鼠蛋白尿的发生。对 Lmx1b 失活 1 周后分离的原代足细胞进行细胞生物学和生物物理实验表明,肌动蛋白细胞骨架组织的调节发生紊乱,时间分辨 DNA 微阵列分析鉴定出编码肌动蛋白细胞骨架相关蛋白的基因,包括 Abra 和 Arl4c,作为潜在的 LMX1B 靶标。条件永生化人足细胞中的染色质免疫沉淀实验和凝胶迁移实验表明,LMX1B 识别 ABRA 和 ARL4C 启动子区域中的富含 AT 的结合位点(FLAT 元件),斑马鱼的敲低实验支持 LMX1B 和 ABRA 在肾原基发育过程中共同作用的模型。我们的报告确立了 LMX1B 在完全分化的足细胞中的重要性,并表明 LMX1B 对于足细胞中适当结构的肌动蛋白细胞骨架的维持是必需的。