Suppr超能文献

朝着抗菌蛋白的合理设计迈进:单点突变可使 RNase A 超家族谱系上的杀菌和凝集活性被激活。

Towards the rational design of antimicrobial proteins: single point mutations can switch on bactericidal and agglutinating activities on the RNase A superfamily lineage.

机构信息

Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

出版信息

FEBS J. 2013 Nov;280(22):5841-52. doi: 10.1111/febs.12506. Epub 2013 Oct 8.

Abstract

The ribonuclease (RNase) A superfamily lineage includes distant members with antimicrobial properties, suggesting a common ancestral host-defense role. In an effort to identify the minimal requirements for the eosinophil cationic protein (ECP or RNase 3) antimicrobial properties we applied site-directed mutagenesis on its closest family homolog, the eosinophil-derived neurotoxin (EDN or RNase 2). Both eosinophil secretion proteins are involved in human immune defense, and are reported as being among the most rapidly evolving coding sequences in primates. Previous studies in our laboratory defined two regions at the N-terminus involved in the protein antimicrobial action, encompassing residues 8-16 and 34-36. Here, we demonstrate that switching two single residues is enough to provide EDN with ECP antipathogen properties. That is, the EDN double-mutant Q34R/R35W displays enhanced bactericidal activity, particularly towards Gram-negative bacteria, and a significant increase in its affinity towards the bacterial outer membrane lipopolysaccharides. Moreover, we confirmed the direct contribution of residue W35 in lipopolysaccharide binding, membrane interaction and permeabilization processes. Furthermore, additional T13 to I substitution provides EDN with an exposed hydrophobic patch required for protein self-aggregation and triggers bacterial agglutination, thereby increasing the final antimicrobial activity by up to 20-fold. Our results highlight how single selected mutations can reshape the entire protein function. This study provides an example of how structure-guided protein engineering can successfully reproduce an evolution selection process towards the emergence of new physiological roles.

摘要

核糖核酸酶 (RNase) A 超家族谱系包括具有抗菌特性的远缘成员,这表明其具有共同的祖先宿主防御作用。为了确定嗜酸性粒细胞阳离子蛋白 (ECP 或 RNase 3) 的抗菌特性的最小要求,我们对其最接近的家族同源物,即嗜酸性粒细胞衍生的神经毒素 (EDN 或 RNase 2) 进行了定点突变。这两种嗜酸性粒细胞分泌蛋白都参与人体免疫防御,并且据报道是灵长类动物中进化最快的编码序列之一。我们实验室的先前研究定义了 N 端参与蛋白质抗菌作用的两个区域,包括残基 8-16 和 34-36。在这里,我们证明只需交换两个单残基就足以使 EDN 具有 ECP 抗病原体特性。也就是说,EDN 的双突变 Q34R/R35W 表现出增强的杀菌活性,特别是对革兰氏阴性菌,并且其对细菌外膜脂多糖的亲和力显著增加。此外,我们证实了残基 W35 在脂多糖结合、膜相互作用和通透性过程中的直接贡献。此外,T13 到 I 的额外取代为 EDN 提供了一个暴露的疏水性斑块,这是蛋白质自聚集所必需的,并引发细菌聚集,从而使最终的抗菌活性增加高达 20 倍。我们的研究结果强调了单个选择突变如何重塑整个蛋白质功能。本研究提供了一个例子,说明如何通过结构导向的蛋白质工程成功地复制进化选择过程,从而产生新的生理作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验