BioNanotechnology Research Center, KRIBB, 125 Kwahangno, Yuseong, Daejeon 305-806, Korea.
Molecules. 2013 Aug 29;18(9):10425-51. doi: 10.3390/molecules180910425.
Target identification of biologically active molecules such as natural products, synthetic small molecules, peptides, and oligonucleotides mainly relies on affinity chromatography, activity-based probes, or photoaffinity labeling (PAL). Amongst them, activity-based probes and PAL have offered great advantages in target identification technology due to their ability to form covalent bonds with the corresponding targets. Activity-based probe technology mainly relies on the chemical reactivity of the target proteins, thereby limiting the majority of the biological targets to enzymes or proteins which display reactive residues at the probe-binding site. In general, the probes should bear a reactive moiety such as an epoxide, a Michael acceptor, or a reactive alkyl halide in their structures. On the other hand, photoaffinity probes (PAPs) are composed of a target-specific ligand and a photoactivatable functional group. When bound to the corresponding target proteins and activated with wavelength-specific light, PAPs generate highly reactive chemical species that covalently cross-link proximal amino acid residues. This process is better known as PAL and is widely employed to identify cellular targets of biologically active molecules. This review highlights recent advances in target identification by PAL, with a focus on the structure and chemistry of the photoaffinity probes developed in the recent decade, coupled to the target proteins identified using these probes.
生物活性分子(如天然产物、合成小分子、肽和寡核苷酸)的靶标识别主要依赖于亲和层析、基于活性的探针或光亲和标记(PAL)。其中,基于活性的探针和 PAL 由于能够与相应的靶标形成共价键,在靶标识别技术中具有很大的优势。活性探针技术主要依赖于靶蛋白的化学反应性,从而将大多数生物靶标限制在具有反应性残基的酶或蛋白质上,这些残基位于探针结合位点。一般来说,探针的结构中应带有反应性部分,如环氧化物、迈克尔受体或反应性烷基卤化物。另一方面,光亲和探针(PAP)由靶标特异性配体和光活化官能团组成。当与相应的靶蛋白结合并被特定波长的光激活时,PAP 会产生高反应性的化学物质,与邻近的氨基酸残基发生共价交联。这个过程通常被称为 PAL,广泛用于鉴定生物活性分子的细胞靶标。本综述重点介绍了 PAL 在靶标识别方面的最新进展,包括近年来开发的光亲和探针的结构和化学性质,以及使用这些探针鉴定的靶标蛋白。