Suppr超能文献

存在错误分类情况下空间相关二元数据的多层次模型:口腔健康研究中的应用

A multilevel model for spatially correlated binary data in the presence of misclassification: an application in oral health research.

作者信息

Mutsvari Timothy, Bandyopadhyay Dipankar, Declerck Dominique, Lesaffre Emmanuel

机构信息

L-Biostat, KU Leuven, Belgium.

出版信息

Stat Med. 2013 Dec 30;32(30):5241-59. doi: 10.1002/sim.5944. Epub 2013 Aug 29.

Abstract

Dental caries is a highly prevalent disease affecting the tooth's hard tissues by acid-forming bacteria. The past and present caries status of a tooth is characterized by a response called caries experience (CE). Several epidemiological studies have explored risk factors for CE. However, the detection of CE is prone to misclassification because some cases are neither clearly carious nor noncarious, and this needs to be incorporated into the epidemiological models for CE data. From a dentist's point of view, it is most appealing to analyze CE on the tooth's surface, implying that the multilevel structure of the data (surface-tooth-mouth) needs to be taken into account. In addition, CE data are spatially referenced, that is, an active lesion on one surface may impact the decay process of the neighboring surfaces, and that might also influence the process of scoring CE. In this paper, we investigate two hypotheses: that is, (i) CE outcomes recorded at surface level are spatially associated; and (ii) the dental examiners exhibit some spatial behavior while scoring CE at surface level, by using a spatially referenced multilevel autologistic model, corrected for misclassification. These hypotheses were tested on the well-known Signal Tandmobiel® study on dental caries, and simulation studies were conducted to assess the effect of misclassification and strength of spatial dependence on the autologistic model parameters. Our results indicate a substantial spatial dependency in the examiners' scoring behavior and also in the prevalence of CE at surface level.

摘要

龋齿是一种非常普遍的疾病,由产酸细菌影响牙齿的硬组织。牙齿过去和现在的龋齿状况以一种称为龋齿经历(CE)的反应为特征。多项流行病学研究探讨了CE的危险因素。然而,CE的检测容易出现错误分类,因为有些病例既不是明显的龋齿也不是非龋齿,这需要纳入CE数据的流行病学模型中。从牙医的角度来看,在牙齿表面分析CE最具吸引力,这意味着需要考虑数据的多层次结构(表面-牙齿-口腔)。此外,CE数据是空间参照的,也就是说,一个表面上的活动性病变可能会影响相邻表面的龋坏过程,这也可能影响CE评分过程。在本文中,我们研究两个假设:即,(i)在表面水平记录的CE结果存在空间关联;以及(ii)牙科检查人员在对表面水平的CE进行评分时表现出一些空间行为,通过使用一个针对错误分类进行校正的空间参照多层次自逻辑模型。这些假设在著名的关于龋齿的Signal Tandmobiel®研究中进行了检验,并进行了模拟研究以评估错误分类和空间依赖性强度对自逻辑模型参数的影响。我们的结果表明,检查人员的评分行为以及表面水平CE的患病率都存在显著的空间依赖性。

相似文献

5
A spatial beta-binomial model for clustered count data on dental caries.针对龋齿的聚类计数数据的空间 Beta-Binomial 模型。
Stat Methods Med Res. 2011 Apr;20(2):85-102. doi: 10.1177/0962280210372453. Epub 2010 May 28.
7
Dental caries analysis in 3- 5-years-old children: a spatial modelling.3-5 岁儿童龋齿分析:空间建模。
Arch Oral Biol. 2010 May;55(5):374-8. doi: 10.1016/j.archoralbio.2010.03.008. Epub 2010 Apr 9.
10
Semiparametric analysis of correlated and interval-censored event-history data.相关和区间删失事件史数据的半参数分析
Stat Methods Med Res. 2019 Sep;28(9):2754-2767. doi: 10.1177/0962280218788383. Epub 2018 Jul 20.

本文引用的文献

7
Validation studies using an alloyed gold standard.使用合金金标准的验证研究。
Am J Epidemiol. 1993 Jun 1;137(11):1251-8. doi: 10.1093/oxfordjournals.aje.a116627.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验