Division of Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, SC 29425, USA.
Stat Methods Med Res. 2011 Apr;20(2):85-102. doi: 10.1177/0962280210372453. Epub 2010 May 28.
One of the most important indicators of dental caries prevalence is the total count of decayed, missing or filled surfaces in a tooth. These count data are often clustered in nature (several count responses clustered within a subject), over-dispersed as well as spatially referenced (a diseased tooth might be positively influencing the decay process of a set of neighbouring teeth). In this article, we develop a multivariate spatial betabinomial (BB) model for these data that accommodates both over-dispersion as well as latent spatial associations. Using a Bayesian paradigm, the re-parameterised marginal mean (as well as variance) under the BB framework are modelled using a regression on subject/tooth-specific co-variables and a conditionally autoregressive prior that models the latent spatial process. The necessity of exploiting spatial associations to model count data arising in dental caries research is demonstrated using a small simulation study. Real data confirms that our spatial BB model provides a superior estimation and model fit as compared to other sub-models that do not consider modelling spatial associations.
龋齿流行的最重要指标之一是牙齿的龋齿、缺失或填补表面总数。这些计数数据通常具有聚集性(在一个主体内聚集了多个计数响应)、过度离散以及空间参照性(一颗患病的牙齿可能会对一组相邻牙齿的龋齿过程产生积极影响)。在本文中,我们为这些数据开发了一个多变量空间二项式(BB)模型,该模型同时考虑了过度离散和潜在的空间关联。使用贝叶斯范式,我们通过对主体/牙齿特定协变量的回归以及条件自回归先验来对 BB 框架下的重新参数化边缘均值(以及方差)进行建模,该先验模型对潜在的空间过程进行建模。通过一个小型模拟研究证明了利用空间关联来对龋齿研究中出现的计数数据进行建模的必要性。真实数据证实,与不考虑建模空间关联的其他子模型相比,我们的空间 BB 模型提供了更好的估计和模型拟合。