Toth Robert, Ribault Justin, Gentile John, Sperling Dan, Madabhushi Anant
Dept. of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854.
Comput Vis Image Underst. 2013 Sep 1;117(9):1051-1060. doi: 10.1016/j.cviu.2012.11.013.
In this work we present an improvement to the popular Active Appearance Model (AAM) algorithm, that we call the Multiple-Levelset AAM (MLA). The MLA can simultaneously segment multiple objects, and makes use of multiple levelsets, rather than anatomical landmarks, to define the shapes. AAMs traditionally define the shape of each object using a set of anatomical landmarks. However, landmarks can be difficult to identify, and AAMs traditionally only allow for segmentation of a single object of interest. The MLA, which is a landmark independent AAM, allows for levelsets of multiple objects to be determined and allows for them to be coupled with image intensities. This gives the MLA the flexibility to simulataneously segmentation multiple objects of interest in a new image. In this work we apply the MLA to segment the prostate capsule, the prostate peripheral zone (PZ), and the prostate central gland (CG), from a set of 40 endorectal, T2-weighted MRI images. The MLA system we employ in this work leverages a hierarchical segmentation framework, so constructed as to exploit domain specific attributes, by utilizing a given prostate segmentation to help drive the segmentations of the CG and PZ, which are embedded within the prostate. Our coupled MLA scheme yielded mean Dice accuracy values of .81, .79 and .68 for the prostate, CG, and PZ, respectively using a leave-one-out cross validation scheme over 40 patient studies. When only considering the midgland of the prostate, the mean values were .89, .84, and .76 for the prostate, CG, and PZ respectively.
在这项工作中,我们对广受欢迎的主动形状模型(AAM)算法进行了改进,我们将其称为多级水平集AAM(MLA)。MLA可以同时分割多个对象,并利用多个水平集而非解剖标志来定义形状。传统的AAM使用一组解剖标志来定义每个对象的形状。然而,标志可能难以识别,并且传统的AAM通常只允许分割单个感兴趣的对象。MLA是一种独立于标志的AAM,它允许确定多个对象的水平集,并允许将它们与图像强度相结合。这使得MLA能够灵活地在新图像中同时分割多个感兴趣的对象。在这项工作中,我们应用MLA从40幅直肠内T2加权MRI图像中分割前列腺包膜、前列腺外周带(PZ)和前列腺中央腺体(CG)。我们在这项工作中使用的MLA系统利用了分层分割框架,其构建方式是通过利用给定的前列腺分割来帮助驱动嵌入在前列腺内的CG和PZ的分割,从而利用特定领域的属性。我们的耦合MLA方案在40项患者研究中使用留一法交叉验证方案时,前列腺、CG和PZ的平均骰子准确度值分别为0.81、0.79和0.68。仅考虑前列腺中叶时,前列腺、CG和PZ的平均值分别为0.89、0.84和0.76。