Suppr超能文献

T2加权磁共振图像上前列腺的腺体和分区分割

Gland and Zonal Segmentation of Prostate on T2W MR Images.

作者信息

Chilali O, Puech P, Lakroum S, Diaf M, Mordon S, Betrouni N

机构信息

INSERM, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, University of Lille, 59000, Lille, France.

Automatic Department, Mouloud Mammeri University, Tizi-Ouzou, Algeria.

出版信息

J Digit Imaging. 2016 Dec;29(6):730-736. doi: 10.1007/s10278-016-9890-0.

Abstract

For many years, prostate segmentation on MR images concerned only the extraction of the entire gland. Currently, in the focal treatment era, there is a continuously increasing need for the separation of the different parts of the organ. In this paper, we propose an automatic segmentation method based on the use of T2W images and atlas images to segment the prostate and to isolate the peripheral and transition zones. The algorithm consists of two stages. First, the target image is registered with each zonal atlas image then the segmentation is obtained by the application of an evidential C-Means clustering. The method was evaluated on a representative and multi-centric image base and yielded mean Dice accuracy values of 0.81, 0.70, and 0.62 for the prostate, the transition zone, and peripheral zone, respectively.

摘要

多年来,磁共振图像上的前列腺分割仅涉及整个腺体的提取。目前,在聚焦治疗时代,对该器官不同部分进行分离的需求持续增长。在本文中,我们提出了一种基于使用T2加权图像和图谱图像的自动分割方法,用于分割前列腺并分离外周区和移行区。该算法由两个阶段组成。首先,将目标图像与每个区域图谱图像进行配准,然后通过应用证据C均值聚类获得分割结果。该方法在一个具有代表性的多中心图像库上进行了评估,前列腺、移行区和外周区的平均骰子准确度值分别为0.81、0.70和0.62。

相似文献

1
Gland and Zonal Segmentation of Prostate on T2W MR Images.
J Digit Imaging. 2016 Dec;29(6):730-736. doi: 10.1007/s10278-016-9890-0.
3
Segmentation of prostate zones using probabilistic atlas-based method with diffusion-weighted MR images.
Comput Methods Programs Biomed. 2020 Nov;196:105572. doi: 10.1016/j.cmpb.2020.105572. Epub 2020 Jun 2.
4
Dual optimization based prostate zonal segmentation in 3D MR images.
Med Image Anal. 2014 May;18(4):660-73. doi: 10.1016/j.media.2014.02.009. Epub 2014 Mar 4.
6
Prostate segmentation: an efficient convex optimization approach with axial symmetry using 3-D TRUS and MR images.
IEEE Trans Med Imaging. 2014 Apr;33(4):947-60. doi: 10.1109/TMI.2014.2300694.
7
Zonal segmentation of prostate using multispectral magnetic resonance images.
Med Phys. 2011 Nov;38(11):6093-105. doi: 10.1118/1.3651610.
8
Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging.
J Digit Imaging. 2017 Dec;30(6):782-795. doi: 10.1007/s10278-017-9964-7.
9
GAS: A genetic atlas selection strategy in multi-atlas segmentation framework.
Med Image Anal. 2019 Feb;52:97-108. doi: 10.1016/j.media.2018.11.007. Epub 2018 Nov 19.
10
[Segmentation of the prostate on magnetic resonance images using an ellipsoidal shape prior constraint algorithm].
Nan Fang Yi Ke Da Xue Xue Bao. 2017 Mar 20;37(3):347-353. doi: 10.3969/j.issn.1673-4254.2017.03.12.

引用本文的文献

2
Automatic segmentation of prostate zonal anatomy on MRI: a systematic review of the literature.
Insights Imaging. 2022 Dec 21;13(1):202. doi: 10.1186/s13244-022-01340-2.
4
Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities.
Diagnostics (Basel). 2022 Jan 24;12(2):289. doi: 10.3390/diagnostics12020289.
5
Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.
Radiol Imaging Cancer. 2021 May;3(3):e200024. doi: 10.1148/rycan.2021200024.
7
Segmentation of prostate and prostate zones using deep learning : A multi-MRI vendor analysis.
Strahlenther Onkol. 2020 Oct;196(10):932-942. doi: 10.1007/s00066-020-01607-x. Epub 2020 Mar 27.
8
Automated Segmentation of Tissues Using CT and MRI: A Systematic Review.
Acad Radiol. 2019 Dec;26(12):1695-1706. doi: 10.1016/j.acra.2019.07.006. Epub 2019 Aug 10.
9
Prostate zonal segmentation in 1.5T and 3T T2W MRI using a convolutional neural network.
J Med Imaging (Bellingham). 2019 Jan;6(1):014501. doi: 10.1117/1.JMI.6.1.014501. Epub 2019 Feb 22.
10
Towards a universal MRI atlas of the prostate and prostate zones : Comparison of MRI vendor and image acquisition parameters.
Strahlenther Onkol. 2019 Feb;195(2):121-130. doi: 10.1007/s00066-018-1348-5. Epub 2018 Aug 23.

本文引用的文献

1
Efficient 3D multi-region prostate MRI segmentation using dual optimization.
Inf Process Med Imaging. 2013;23:304-15. doi: 10.1007/978-3-642-38868-2_26.
2
Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge.
Med Image Anal. 2014 Feb;18(2):359-73. doi: 10.1016/j.media.2013.12.002. Epub 2013 Dec 25.
3
Simultaneous Segmentation of Prostatic Zones Using Active Appearance Models With Multiple Coupled Levelsets.
Comput Vis Image Underst. 2013 Sep 1;117(9):1051-1060. doi: 10.1016/j.cviu.2012.11.013.
4
A pattern recognition approach to zonal segmentation of the prostate on MRI.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):413-20. doi: 10.1007/978-3-642-33418-4_51.
5
Imaging-guided prostate biopsy: conventional and emerging techniques.
Radiographics. 2012 May-Jun;32(3):819-37. doi: 10.1148/rg.323115053.
6
Zonal segmentation of prostate using multispectral magnetic resonance images.
Med Phys. 2011 Nov;38(11):6093-105. doi: 10.1118/1.3651610.
7
ProstAtlas: a digital morphologic atlas of the prostate.
Eur J Radiol. 2012 Sep;81(9):1969-75. doi: 10.1016/j.ejrad.2011.05.001. Epub 2011 May 31.
8
Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI.
Int J Comput Assist Radiol Surg. 2009 Mar;4(2):181-8. doi: 10.1007/s11548-008-0281-y. Epub 2008 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验