Faculty of Information Technology, Pázmány Péter Catholic University, Budapest 1083, Práter Street 50/A, Hungary.
Molecules. 2013 Aug 30;18(9):10548-67. doi: 10.3390/molecules180910548.
NMR spectroscopy is the leading technique to characterize protein internal dynamics at the atomic level and on multiple time scales. However, the structural interpretation of the observables obtained by various measurements is not always straightforward and in many cases dynamics-related parameters are only used to "decorate" static structural models without offering explicit description of conformational heterogeneity. To overcome such limitations, several computational techniques have been developed to generate ensemble-based representations of protein structure and dynamics with the use of NMR-derived data. An important common aspect of the methods is that NMR observables and derived parameters are interpreted as properties of the ensemble instead of individual conformers. The resulting ensembles reflect the experimentally determined internal mobility of proteins at a given time scale and can be used to understand the role of internal motions in biological processes at atomic detail. In this review we provide an overview of the calculation methods currently available and examples of biological insights obtained by the ensemble-based models of the proteins investigated.
NMR 光谱学是在原子水平和多个时间尺度上表征蛋白质内部动力学的主要技术。然而,通过各种测量获得的可观测值的结构解释并不总是直接的,在许多情况下,与动力学相关的参数仅用于“装饰”静态结构模型,而没有提供构象异质性的明确描述。为了克服这些限制,已经开发了几种计算技术,以使用 NMR 衍生数据生成基于整体的蛋白质结构和动力学表示。这些方法的一个重要共同方面是,将 NMR 可观测值和衍生参数解释为整体的属性,而不是单个构象的属性。由此产生的整体反映了在给定时间尺度下蛋白质内部流动性的实验测定,并可用于在原子细节上理解内部运动在生物过程中的作用。在这篇综述中,我们提供了当前可用的计算方法概述,并提供了通过所研究蛋白质的基于整体模型获得的生物学见解的示例。