Institut de Biologie Structurale, CNRS, CEA, UGA, Grenoble, France.
Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14020-14024. doi: 10.1002/anie.201706740. Epub 2017 Sep 14.
The dynamic fluctuations of intrinsically disordered proteins (IDPs) define their function. Although experimental nuclear magnetic resonance (NMR) relaxation reveals the motional complexity of these highly flexible proteins, the absence of physical models describing IDP dynamics hinders their mechanistic interpretation. Combining molecular dynamics simulation and NMR, we introduce a framework in which distinct motions are attributed to local libration, backbone dihedral angle dynamics and longer-range tumbling of one or more peptide planes. This model provides unique insight into segmental organization of dynamics in IDPs and allows us to investigate the presence and extent of the correlated motions that are essential for function.
无序蛋白质(IDP)的动态波动决定了它们的功能。尽管实验性核磁共振(NMR)弛豫揭示了这些高度灵活的蛋白质的复杂运动,但缺乏描述 IDP 动力学的物理模型阻碍了其机械解释。我们结合分子动力学模拟和 NMR,引入了一种框架,其中将不同的运动归因于局部摆动、主链二面角动力学和一个或多个肽平面的长程翻滚。该模型为 IDP 中动态的分段组织提供了独特的见解,并使我们能够研究对功能至关重要的相关运动的存在和程度。