Baetschmann Gregori, Winkelmann Rainer
Department of Economics, University of Zurich, CH-8032 Zurich, Switzerland.
Biom J. 2013 Sep;55(5):679-86. doi: 10.1002/bimj.201200021.
This paper is concerned with the analysis of zero-inflated count data when time of exposure varies. It proposes a modified zero-inflated count data model where the probability of an extra zero is derived from an underlying duration model with Weibull hazard rate. The new model is compared to the standard Poisson model with logit zero inflation in an application to the effect of treatment with thiotepa on the number of new bladder tumors.
本文关注暴露时间变化时零膨胀计数数据的分析。它提出了一种改进的零膨胀计数数据模型,其中额外零值的概率源自具有威布尔危险率的潜在持续时间模型。在硫替派治疗对新膀胱肿瘤数量影响的应用中,将新模型与具有logit零膨胀的标准泊松模型进行了比较。