Suppr超能文献

图形处理单元加速了人体动脉树中一维血流的计算。

Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.

机构信息

Automatics and Information Technology, Transilvania University of Brasov, Str. Politehnicii nr. 1, Brasov 500024, Romania; Siemens Corporate Technology, Siemens Corporation, Bulevardul Eroilor Nr. 3A, Brasov 500007, Romania.

出版信息

Int J Numer Method Biomed Eng. 2013 Dec;29(12):1428-55. doi: 10.1002/cnm.2585. Epub 2013 Sep 5.

Abstract

One-dimensional blood flow models have been used extensively for computing pressure and flow waveforms in the human arterial circulation. We propose an improved numerical implementation based on a graphics processing unit (GPU) for the acceleration of the execution time of one-dimensional model. A novel parallel hybrid CPU-GPU algorithm with compact copy operations (PHCGCC) and a parallel GPU only (PGO) algorithm are developed, which are compared against previously introduced PHCG versions, a single-threaded CPU only algorithm and a multi-threaded CPU only algorithm. Different second-order numerical schemes (Lax-Wendroff and Taylor series) are evaluated for the numerical solution of one-dimensional model, and the computational setups include physiologically motivated non-periodic (Windkessel) and periodic boundary conditions (BC) (structured tree) and elastic and viscoelastic wall laws. Both the PHCGCC and the PGO implementations improved the execution time significantly. The speed-up values over the single-threaded CPU only implementation range from 5.26 to 8.10 × , whereas the speed-up values over the multi-threaded CPU only implementation range from 1.84 to 4.02 × . The PHCGCC algorithm performs best for an elastic wall law with non-periodic BC and for viscoelastic wall laws, whereas the PGO algorithm performs best for an elastic wall law with periodic BC.

摘要

一维血流模型已广泛用于计算人体动脉循环中的压力和流量波形。我们提出了一种基于图形处理单元(GPU)的改进数值实现方法,以加速一维模型的执行时间。开发了一种具有紧凑复制操作的新型并行混合 CPU-GPU 算法(PHCGCC)和一种仅并行 GPU 算法(PGO),并与之前介绍的 PHCG 版本、单线程 CPU 算法和多线程 CPU 算法进行了比较。不同的二阶数值方案(Lax-Wendroff 和 Taylor 级数)用于一维模型的数值解,计算设置包括生理驱动的非周期性(Windkessel)和周期性边界条件(BC)(结构化树)以及弹性和粘弹性壁律。PHCGCC 和 PGO 实现都显著提高了执行时间。与单线程 CPU 实现相比,加速值范围从 5.26 到 8.10×,而与多线程 CPU 实现相比,加速值范围从 1.84 到 4.02×。对于具有非周期性 BC 的弹性壁律和粘弹性壁律,PHCGCC 算法的性能最佳,而对于具有周期性 BC 的弹性壁律,PGO 算法的性能最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验