School of Population Health, Infectious Disease Epidemiology Unit, University of Queensland, Brisbane, Australia.
PLoS Negl Trop Dis. 2013 Aug 29;7(8):e2386. doi: 10.1371/journal.pntd.0002386. eCollection 2013.
Echinococcosis is a complex zoonosis that has domestic and sylvatic lifecycles, and a range of different intermediate and definitive host species. The complexities of its transmission and the sparse evidence on the effectiveness of control strategies in diverse settings provide significant challenges for the design of effective public health policy against this disease. Mathematical modelling is a useful tool for simulating control packages under locally specific transmission conditions to inform optimal timing and frequency of phased interventions for cost-effective control of echinococcosis. The aims of this review of 30 years of Echinococcus modelling were to discern the epidemiological mechanisms underpinning models of Echinococcus granulosus and E. multilocularis transmission and to establish the need to include a human transmission component in such models.
METHODOLOGY/PRINCIPAL FINDINGS: A search was conducted of all relevant articles published up until July 2012, identified from the PubMED, Web of Knowledge and Medline databases and review of bibliographies of selected papers. Papers eligible for inclusion were those describing the design of a new model, or modification of an existing mathematical model of E. granulosus or E. multilocularis transmission. A total of 13 eligible papers were identified, five of which described mathematical models of E. granulosus and eight that described E. multilocularis transmission. These models varied primarily on the basis of six key mechanisms that all have the capacity to modulate model dynamics, qualitatively affecting projections. These are: 1) the inclusion of a 'latent' class and/or time delay from host exposure to infectiousness; 2) an age structure for animal hosts; 3) the presence of density-dependent constraints; 4) accounting for seasonality; 5) stochastic parameters; and 6) inclusion of spatial and risk structures.
CONCLUSIONS/SIGNIFICANCE: This review discusses the conditions under which these mechanisms may be important for inclusion in models of Echinococcus transmission and proposes recommendations for the design of dynamic human models of transmission. Accounting for the dynamic behaviour of the Echinococcus parasites in humans will be key to predicting changes in the disease burden over time and to simulate control strategies that optimise public health impact.
包虫病是一种复杂的人畜共患病,具有家畜和野生动物的生命周期,以及一系列不同的中间宿主和终末宿主。其传播的复杂性以及在不同环境下控制策略有效性的证据不足,为针对这种疾病制定有效的公共卫生政策带来了重大挑战。数学模型是一种有用的工具,可以模拟在局部特定传播条件下的控制方案,为针对包虫病的成本效益控制制定最佳的阶段性干预时间和频率提供信息。本综述回顾了 30 年来的包虫病建模工作,旨在阐明细粒棘球蚴和多房棘球蚴传播模型的流行病学机制,并确定在这些模型中纳入人类传播因素的必要性。
方法/主要发现:对截至 2012 年 7 月在 Pubmed、Web of Knowledge 和 Medline 数据库中检索到的所有相关文章进行了检索,并对选定论文的参考文献进行了回顾。符合纳入标准的论文是指描述新模型设计或现有细粒棘球蚴或多房棘球蚴传播数学模型修改的论文。共确定了 13 篇符合条件的论文,其中 5 篇描述了细粒棘球蚴的数学模型,8 篇描述了多房棘球蚴的传播。这些模型主要基于六个关键机制而有所不同,这些机制都有能力调节模型动力学,对预测结果产生定性影响。这些机制是:1)纳入“潜伏”类别和/或宿主暴露到传染性之间的时间延迟;2)动物宿主的年龄结构;3)存在密度依赖约束;4)考虑季节性;5)随机参数;以及 6)纳入空间和风险结构。
结论/意义:本综述讨论了在包虫病传播模型中纳入这些机制的条件,并提出了设计动态人类传播模型的建议。考虑到人类中包虫寄生虫的动态行为将是预测疾病负担随时间变化的关键,并模拟优化公共卫生影响的控制策略。