Suppr超能文献

鉴定兼性核酮糖单磷酸循环甲基营养型芽孢杆菌的果糖 1,6-二磷酸酶和 7-磷酸景天庚酮糖酶。

Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus.

机构信息

Chair of Genetics of Prokaryotes, Faculty of Biology.

出版信息

J Bacteriol. 2013 Nov;195(22):5112-22. doi: 10.1128/JB.00672-13. Epub 2013 Sep 6.

Abstract

The genome of the facultative ribulose monophosphate (RuMP) cycle methylotroph Bacillus methanolicus encodes two bisphosphatases (GlpX), one on the chromosome (GlpX(C)) and one on plasmid pBM19 (GlpX(P)), which is required for methylotrophy. Both enzymes were purified from recombinant Escherichia coli and were shown to be active as fructose 1,6-bisphosphatases (FBPases). The FBPase-negative Corynebacterium glutamicum Δfbp mutant could be phenotypically complemented with glpX(C) and glpX(P) from B. methanolicus. GlpX(P) and GlpX(C) share similar functional properties, as they were found here to be active as homotetramers in vitro, activated by Mn(2+) ions and inhibited by Li(+), but differed in terms of the kinetic parameters. GlpX(C) showed a much higher catalytic efficiency and a lower Km for fructose 1,6-bisphosphate (86.3 s(-1) mM(-1) and 14 ± 0.5 μM, respectively) than GlpX(P) (8.8 s(-1) mM(-1) and 440 ± 7.6 μM, respectively), indicating that GlpX(C) is the major FBPase of B. methanolicus. Both enzymes were tested for activity as sedoheptulose 1,7-bisphosphatase (SBPase), since a SBPase variant of the ribulose monophosphate cycle has been proposed for B. methanolicus. The substrate for the SBPase reaction, sedoheptulose 1,7-bisphosphate, could be synthesized in vitro by using both fructose 1,6-bisphosphate aldolase proteins from B. methanolicus. Evidence for activity as an SBPase could be obtained for GlpX(P) but not for GlpX(C). Based on these in vitro data, GlpX(P) is a promiscuous SBPase/FBPase and might function in the RuMP cycle of B. methanolicus.

摘要

兼性核酮糖单磷酸(RuMP)循环甲基营养菌巴氏芽孢杆菌的基因组编码两种二磷酸酶(GlpX),一种位于染色体上(GlpX(C)),一种位于质粒 pBM19 上(GlpX(P)),这对于甲基营养至关重要。这两种酶均从重组大肠杆菌中纯化,并被证明是果糖 1,6-二磷酸酶(FBPase)的活性。FBPase 阴性谷氨酸棒杆菌 Δfbp 突变体可以用来自巴氏芽孢杆菌的 glpX(C) 和 glpX(P)进行表型互补。GlpX(P) 和 GlpX(C) 具有相似的功能特性,因为它们在这里被发现是体外活性的同四聚体,被 Mn(2+)离子激活,被 Li(+)抑制,但在动力学参数上有所不同。GlpX(C) 对果糖 1,6-二磷酸的催化效率和 Km 值要高得多(分别为 86.3 s(-1) mM(-1)和 14 ± 0.5 μM),而 GlpX(P) 则低得多(分别为 8.8 s(-1) mM(-1)和 440 ± 7.6 μM),这表明 GlpX(C) 是巴氏芽孢杆菌的主要 FBPase。这两种酶都被测试了 sedoheptulose 1,7-二磷酸酶(SBPase)的活性,因为有人提出 RuMP 循环的 SBPase 变体适用于巴氏芽孢杆菌。SBPase 反应的底物 sedoheptulose 1,7-二磷酸可以通过使用来自巴氏芽孢杆菌的果糖 1,6-二磷酸醛缩酶蛋白在体外合成。可以获得 GlpX(P) 作为 SBPase 的活性证据,但不能获得 GlpX(C)。基于这些体外数据,GlpX(P) 是一种混杂的 SBPase/FBPase,可能在巴氏芽孢杆菌的 RuMP 循环中发挥作用。

相似文献

3
The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.
Microbiology (Reading). 2013 Aug;159(Pt 8):1770-1781. doi: 10.1099/mic.0.067314-0. Epub 2013 Jun 12.
7
Structural and biochemical characterization of the type II fructose-1,6-bisphosphatase GlpX from Escherichia coli.
J Biol Chem. 2009 Feb 6;284(6):3784-92. doi: 10.1074/jbc.M808186200. Epub 2008 Dec 10.
8
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
J Bacteriol. 2004 Mar;186(5):1229-38. doi: 10.1128/JB.186.5.1229-1238.2004.
9
6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.
Appl Microbiol Biotechnol. 2017 May;101(10):4185-4200. doi: 10.1007/s00253-017-8173-0. Epub 2017 Feb 17.

引用本文的文献

1
Ribose-5-phosphate metabolism protects from antibiotic lethality.
mBio. 2025 Aug 13;16(8):e0065425. doi: 10.1128/mbio.00654-25. Epub 2025 Jul 2.
2
A novel gluconeogenic route enables efficient use of erythritol in zoonotic .
Front Vet Sci. 2024 Mar 27;11:1328293. doi: 10.3389/fvets.2024.1328293. eCollection 2024.
3
4
Metabolic engineering of thermophilic Bacillus methanolicus for riboflavin overproduction from methanol.
Microb Biotechnol. 2023 May;16(5):1011-1026. doi: 10.1111/1751-7915.14239. Epub 2023 Mar 25.
5
Carbon fixation pathways across the bacterial and archaeal tree of life.
PNAS Nexus. 2022 Oct 4;1(5):pgac226. doi: 10.1093/pnasnexus/pgac226. eCollection 2022 Nov.
7
Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy.
Microorganisms. 2022 Jan 20;10(2):220. doi: 10.3390/microorganisms10020220.
8
Aerobic Utilization of Methanol for Microbial Growth and Production.
Adv Biochem Eng Biotechnol. 2022;180:169-212. doi: 10.1007/10_2021_177.

本文引用的文献

1
The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.
Microbiology (Reading). 2013 Aug;159(Pt 8):1770-1781. doi: 10.1099/mic.0.067314-0. Epub 2013 Jun 12.
4
Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase.
Nature. 2011 Oct 9;478(7370):538-41. doi: 10.1038/nature10457.
6
Riboneogenesis in yeast.
Cell. 2011 Jun 10;145(6):969-80. doi: 10.1016/j.cell.2011.05.022.
8
Modularity of methylotrophy, revisited.
Environ Microbiol. 2011 Oct;13(10):2603-22. doi: 10.1111/j.1462-2920.2011.02464.x. Epub 2011 Mar 28.
9
Characterization of recombinant fructose-1,6-bisphosphate aldolase from Methylococcus capsulatus Bath.
Biochemistry (Mosc). 2010 Jul;75(7):892-8. doi: 10.1134/s0006297910070114.
10
Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme.
Nature. 2010 Apr 15;464(7291):1077-81. doi: 10.1038/nature08884. Epub 2010 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验