BMC Plant Biol. 2011 Aug 31;11:123. doi: 10.1186/1471-2229-11-123.
Biochemical models predict that photosynthesis in C(3) plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (V(c,max)), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO(2)] levels Rubisco is not saturated; consequently, elevating [CO(2)] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO(2)] is predicted to exceed 550 ppm by 2050. The C(3) cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation.
We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO(2)] (585 ppm) under fully open air fumigation. Growth under elevated [CO(2)] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO(2)] via downregulation of V(c,max) in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and J(max)) for transformants led to greater yield increases than WT at elevated [CO(2)] compared to ambient grown plants.
These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C(3) crops grown at [CO(2)] expected by the middle of the 21st century.
生化模型预测,C(3) 植物的光合作用最常受到两个过程中较慢的一个的限制,这两个过程分别是:Rubisco 酶羧化 RuBP 的最大能力(V(c,max)),或通过电子传递再生 RuBP(J)。在当前大气[CO(2)]水平下,Rubisco 没有饱和;因此,提高[CO(2)]会增加羧化的速度,并抑制也由 Rubisco 催化的竞争氧合反应。在未来,随着[CO(2)]预计到 2050 年将超过 550ppm,叶片光合作用(A)将越来越受到 RuBP 再生的限制。C(3) 循环酶 sedoheptulose-1,7 双磷酸酶(SBPase,EC 3.1.3.17)已被证明在光饱和下对 RuBP 再生具有很强的代谢控制作用。
我们检验了这样一个假设,即在完全开放空气熏蒸下,在升高的[CO(2)](585ppm)下生长时,与野生型(WT)烟草相比,过表达 SBPase 的烟草转化体将表现出更大的 A 刺激。在升高的[CO(2)]下生长刺激了瞬时 A 和日间光合作用积分(A')在转化体中比 WT 更显著增加。在 WT 和转化体中都有证据表明,通过下调 V(c,max),对升高的[CO(2)]进行了光合作用适应。尽管如此,与在环境条件下生长的植物相比,转化体具有更高的碳同化和电子传递速率(J 和 J(max)),导致在升高的[CO(2)]下产量增加比 WT 更大。
这些结果提供了概念验证,即增加单个光合作用酶的含量和活性可以增强预计在 21 世纪中叶生长的 C(3)作物的碳同化和产量。