Suppr超能文献

使用 ENTS 从模型和非模型生物的原始序列数据中预测全基因组蛋白质相互作用网络。

Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.

机构信息

Department of Biology, West Virginia University, Morgantown, West Virginia, 26506, USA.

出版信息

BMC Genomics. 2013 Sep 10;14:608. doi: 10.1186/1471-2164-14-608.

Abstract

BACKGROUND

The large-scale identification of physical protein-protein interactions (PPIs) is an important step toward understanding how biological networks evolve and generate emergent phenotypes. However, experimental identification of PPIs is a laborious and error-prone process, and current methods of PPI prediction tend to be highly conservative or require large amounts of functional data that may not be available for newly-sequenced organisms.

RESULTS

In this study we demonstrate a random-forest based technique, ENTS, for the computational prediction of protein-protein interactions based only on primary sequence data. Our approach is able to efficiently predict interactions on a whole-genome scale for any eukaryotic organism, using pairwise combinations of conserved domains and predicted subcellular localization of proteins as input features. We present the first predicted interactome for the forest tree Populus trichocarpa in addition to the predicted interactomes for Saccharomyces cerevisiae, Homo sapiens, Mus musculus, and Arabidopsis thaliana. Comparing our approach to other PPI predictors, we find that ENTS performs comparably to or better than a number of existing approaches, including several that utilize a variety of functional information for their predictions. We also find that the predicted interactions are biologically meaningful, as indicated by similarity in functional annotations and enrichment of co-expressed genes in public microarray datasets. Furthermore, we demonstrate some of the biological insights that can be gained from these predicted interaction networks. We show that the predicted interactions yield informative groupings of P. trichocarpa metabolic pathways, literature-supported associations among human disease states, and theory-supported insight into the evolutionary dynamics of duplicated genes in paleopolyploid plants.

CONCLUSION

We conclude that the ENTS classifier will be a valuable tool for the de novo annotation of genome sequences, providing initial clues about regulatory and metabolic network topology, and revealing relationships that are not immediately obvious from traditional homology-based annotations.

摘要

背景

大规模鉴定物理蛋白质-蛋白质相互作用(PPIs)是理解生物网络如何进化并产生新兴表型的重要步骤。然而,PPIs 的实验鉴定是一个费力且容易出错的过程,而当前的 PPI 预测方法往往非常保守,或者需要大量可能无法用于新测序生物体的功能数据。

结果

在这项研究中,我们展示了一种基于随机森林的技术 ENTS,用于仅基于原始序列数据进行蛋白质-蛋白质相互作用的计算预测。我们的方法能够有效地预测任何真核生物的全基因组范围内的相互作用,使用保守结构域的成对组合和蛋白质的预测亚细胞定位作为输入特征。我们除了预测酿酒酵母、人类、小鼠和拟南芥的相互作用组外,还首次预测了森林树杨属的相互作用组。将我们的方法与其他 PPI 预测器进行比较,我们发现 ENTS 的性能与其他一些方法相当或更好,包括一些利用各种功能信息进行预测的方法。我们还发现预测的相互作用具有生物学意义,如公共微阵列数据集的功能注释相似性和共表达基因的富集所表明的那样。此外,我们展示了从这些预测的相互作用网络中可以获得的一些生物学见解。我们表明,预测的相互作用产生了有价值的杨属代谢途径分组、人类疾病状态之间的文献支持关联以及对古多倍体植物中重复基因进化动态的理论支持见解。

结论

我们得出结论,ENTS 分类器将成为从头注释基因组序列的有价值工具,提供有关调节和代谢网络拓扑的初始线索,并揭示传统同源性注释中不明显的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c9/3848842/8461b86a451c/1471-2164-14-608-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验