Suppr超能文献

评估社区在推进基于网络的蛋白质-蛋白质相互作用预测方面的努力。

Assessment of community efforts to advance network-based prediction of protein-protein interactions.

机构信息

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.

Translational and Precision Medicine Department Sapienza University of Rome, Rome, Italy.

出版信息

Nat Commun. 2023 Mar 22;14(1):1582. doi: 10.1038/s41467-023-37079-7.

Abstract

Comprehensive understanding of the human protein-protein interaction (PPI) network, aka the human interactome, can provide important insights into the molecular mechanisms of complex biological processes and diseases. Despite the remarkable experimental efforts undertaken to date to determine the structure of the human interactome, many PPIs remain unmapped. Computational approaches, especially network-based methods, can facilitate the identification of previously uncharacterized PPIs. Many such methods have been proposed. Yet, a systematic evaluation of existing network-based methods in predicting PPIs is still lacking. Here, we report community efforts initiated by the International Network Medicine Consortium to benchmark the ability of 26 representative network-based methods to predict PPIs across six different interactomes of four different organisms: A. thaliana, C. elegans, S. cerevisiae, and H. sapiens. Through extensive computational and experimental validations, we found that advanced similarity-based methods, which leverage the underlying network characteristics of PPIs, show superior performance over other general link prediction methods in the interactomes we considered.

摘要

全面了解人类蛋白质-蛋白质相互作用(PPI)网络,又称人类相互作用组,可以深入了解复杂生物过程和疾病的分子机制。尽管迄今为止为确定人类相互作用组的结构付出了巨大的实验努力,但仍有许多 PPI 尚未被绘制出来。计算方法,特别是基于网络的方法,可以促进以前未被表征的 PPI 的识别。已经提出了许多这样的方法。然而,仍然缺乏对现有基于网络的方法在预测 PPI 方面的系统评估。在这里,我们报告了由国际网络医学联盟发起的社区努力,以对 26 种有代表性的基于网络的方法在预测来自四个不同生物体的六个不同相互作用组中的 PPI 的能力进行基准测试:拟南芥、秀丽隐杆线虫、酿酒酵母和智人。通过广泛的计算和实验验证,我们发现,利用 PPI 的基础网络特征的先进相似性方法,在我们考虑的相互作用组中,其性能优于其他一般链接预测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验