University of Utah School of Medicine, Department of Ophthalmology, John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City, UT 84132, USA.
Prog Retin Eye Res. 2013 Nov;37:141-62. doi: 10.1016/j.preteyeres.2013.08.002. Epub 2013 Sep 7.
Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies of complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication.
连接组学是一种基于高速自动化电子光学成像、神经数据体积的计算组装、基于网络的导航工具来探索 10(12)-10(15)字节(兆字节到拍字节)图像体积,以及注释和标记工具,将图像转换为具有细胞元数据的丰富网络的策略。这些网络数据和相关元数据的集合,使用图论和分类理论的工具进行分析,可以与经典系统理论合并,更全面地描述生物信息处理系统在视网膜和大脑中的实现方式。网络有两个可分离的特征:拓扑结构和连接属性。连接组学的第一个发现强烈验证了这样一个观点,即完整视网膜网络的拓扑结构远比经典解剖学中出现的简单示意图复杂得多。特别是,连接组学已经允许对视网膜内丛状层进行激进的重构,表明网络功能不能简单地从分层推断出来;揭示了将不同细胞插入共享网络的复杂几何规则;揭示了哺乳动物杆状和锥状系统之间出乎意料的双向信号通路;记录了选择性的前馈系统、新的候选信号架构、新的耦合模式,以及哺乳动物 AII 无长突细胞的高度复杂结构。这仅仅是个开始,因为连接组学的基本原理很容易转移到非神经细胞复合物上,并为评估细胞间通信提供了新的背景。