Jonas Eric, Kording Konrad
Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, United States.
Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, United States.
Elife. 2015 Apr 30;4:e04250. doi: 10.7554/eLife.04250.
Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity, better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets.
神经连接组学已开始产生大量数据,这就需要新的分析方法来发现其生物学和计算结构。长期以来,人们一直认为,发现神经元类型及其与微电路的关系对于理解神经功能至关重要。在此,我们开发了一种非参数贝叶斯技术,可识别连接组学数据中的神经元类型和微电路模式。该技术以一种有原则且概率连贯的方式,整合了生物学家传统上使用的信息,包括连接性、细胞体位置以及突触的空间分布。我们表明,与更简单的算法相比,该方法能在视网膜中识别出已知的神经元类型,并能对连接性进行预测。它还能够揭示秀丽隐杆线虫的神经系统以及一个老式人造微处理器中有趣的数据结构。我们的方法从连接组学中提取结构意义,为从这些新兴数据集中自动获取解剖学见解提供了新途径。