Authors' Affiliations: Helen Diller Family Comprehensive Cancer Center; Departments of Cell and Molecular Pharmacology, Hematology and Oncology, and Pathology, University of California, San Francisco, San Francisco, California; and Surgical Oncology Research Laboratory, Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia.
Cancer Res. 2013 Nov 1;73(21):6448-61. doi: 10.1158/0008-5472.CAN-13-0681. Epub 2013 Sep 9.
Adenocarcinoma of the lung, a leading cause of cancer death, frequently displays mutational activation of the KRAS proto-oncogene but, unlike lung cancers expressing mutated EGFR, ROS1, or ALK, there is no pathway-targeted therapy for patients with KRAS-mutated lung cancer. In preclinical models, expression of oncogenic KRAS(G12D) in the lung epithelium of adult mice initiates development of lung adenocarcinoma through activation of downstream signaling pathways. In contrast, mutationally activated BRAF(V600E), a KRAS effector, fails to initiate lung carcinogenesis despite highly efficient induction of benign lung tumorigenesis. To test if phosphoinositide 3-kinase (PI3K)-α (PIK3CA), another KRAS effector, might cooperate with oncogenic BRAF(V600E) to promote lung cancer progression, we used mice carrying a conditional allele of Pik3ca that allows conversion of the wild-type catalytic subunit of PIK3CA to mutationally activated PIK3CA(H1047R). Although expression of PIK3CA(H1047R) in the lung epithelium, either alone or in combination with PTEN silencing, was without phenotype, concomitant expression of BRAF(V600E) and PIK3CA(H1047R) led to dramatically decreased tumor latency and increased tumor burden compared with BRAF(V600E) alone. Most notably, coexpression of BRAF(V600E) and PIK3CA(H1047R) elicited lung adenocarcinomas in a manner reminiscent of the effects of KRAS(G12D). These data emphasize a role for PI3K signaling, not in lung tumor initiation per se, but in both the rate of tumor growth and the propensity of benign lung tumors to progress to a malignant phenotype. Finally, biologic and biochemical analysis of BRAF(V600E)/PIK3CA(H1047R)-expressing mouse lung cancer cells revealed mechanistic clues about cooperative regulation of the cell-division cycle and apoptosis by these oncogenes.
肺腺癌是癌症死亡的主要原因,经常显示 KRAS 原癌基因的突变激活,但与表达突变型 EGFR、ROS1 或 ALK 的肺癌不同,KRAS 突变型肺癌患者没有靶向治疗途径。在临床前模型中,致癌 KRAS(G12D)在成年小鼠肺上皮中的表达通过激活下游信号通路引发肺腺癌的发展。相比之下,突变激活的 BRAF(V600E),KRAS 的效应物,尽管能高效诱导良性肺肿瘤发生,但不能引发肺癌发生。为了测试另一个 KRAS 效应物磷酸肌醇 3-激酶 (PI3K)-α (PIK3CA) 是否可能与致癌 BRAF(V600E)合作促进肺癌进展,我们使用了携带 Pik3ca 条件性等位基因的小鼠,该基因允许野生型 PIK3CA 的催化亚基转化为突变激活的 PIK3CA(H1047R)。尽管 PIK3CA(H1047R)在肺上皮中的表达,无论是单独表达还是与 PTEN 沉默联合表达,都没有表型,但与 BRAF(V600E)同时表达 PIK3CA(H1047R)导致肿瘤潜伏期明显缩短,肿瘤负担增加与单独表达 BRAF(V600E)相比。最值得注意的是,BRAF(V600E)和 PIK3CA(H1047R)的共表达以类似于 KRAS(G12D)的方式引发肺腺癌。这些数据强调了 PI3K 信号传导的作用,不是在肺肿瘤的起始本身,而是在肿瘤生长的速度和良性肺肿瘤向恶性表型进展的倾向。最后,对表达 BRAF(V600E)/PIK3CA(H1047R)的小鼠肺癌细胞的生物学和生化分析揭示了这些癌基因对细胞分裂周期和细胞凋亡的协同调控的机制线索。