Green Shon, Trejo Christy L, McMahon Martin
Helen Diller Family Comprehensive Cancer Center and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California.
Cancer Res. 2015 Dec 15;75(24):5378-91. doi: 10.1158/0008-5472.CAN-15-1249. Epub 2015 Nov 13.
KRAS-activating mutations drive human non-small cell lung cancer and initiate lung tumorigenesis in genetically engineered mouse (GEM) models. However, in a GEM model of KRAS(G12D)-induced lung cancer, tumors arise stochastically following a latency period, suggesting that additional events are required to promote early-stage tumorigenic expansion of KRAS(G12D)-mutated cells. PI3Kα (PIK3CA) is a direct effector of KRAS, but additional activation of PI3'-lipid signaling may be required to potentiate KRAS-driven lung tumorigenesis. Using GEM models, we tested whether PI3'-lipid signaling was limiting for the promotion of KRAS(G12D)-driven lung tumors by inducing the expression of KRAS(G12D) in the absence and presence of the activating PIK3CA(H1047R) mutation. PIK3CA(H1047R) expression alone failed to promote tumor formation, but dramatically enhanced tumorigenesis initiated by KRAS(G12D). We further observed that oncogenic cooperation between KRAS(G12D) and PIK3CA(H1047R) was accompanied by PI3Kα-mediated regulation of c-MYC, GSK3β, p27(KIP1), survivin, and components of the RB pathway, resulting in accelerated cell division of human or mouse lung cancer-derived cell lines. These data suggest that, although KRAS(G12D) may activate PI3Kα by direct biochemical mechanisms, PI3'-lipid signaling remains rate-limiting for the cell-cycle progression and expansion of early-stage KRAS(G12D)-initiated lung cells. Therefore, we provide a potential mechanistic rationale for the selection of KRAS and PIK3CA coactivating mutations in a number of human malignancies, with implications for the clinical deployment of PI3' kinase-targeted therapies.
KRAS激活突变驱动人类非小细胞肺癌,并在基因工程小鼠(GEM)模型中引发肺肿瘤发生。然而,在KRAS(G12D)诱导的肺癌GEM模型中,肿瘤在一段潜伏期后随机出现,这表明需要额外的事件来促进KRAS(G12D)突变细胞的早期肿瘤发生扩展。PI3Kα(PIK3CA)是KRAS的直接效应器,但可能需要PI3'-脂质信号的额外激活来增强KRAS驱动的肺肿瘤发生。利用GEM模型,我们通过在不存在和存在激活型PIK3CA(H1047R)突变的情况下诱导KRAS(G12D)的表达,测试了PI3'-脂质信号是否对促进KRAS(G12D)驱动的肺肿瘤形成具有限制作用。单独的PIK3CA(H1047R)表达未能促进肿瘤形成,但显著增强了由KRAS(G12D)引发的肿瘤发生。我们进一步观察到,KRAS(G12D)与PIK3CA(H1047R)之间的致癌协同作用伴随着PI3Kα介导的对c-MYC、GSK3β、p27(KIP1)、存活素以及RB通路成分的调节,导致人或小鼠肺癌来源细胞系的细胞分裂加速。这些数据表明,尽管KRAS(G12D)可能通过直接的生化机制激活PI3Kα,但PI3'-脂质信号对于早期KRAS(G12D)引发的肺细胞的细胞周期进程和扩展仍然是限速的。因此,我们为在许多人类恶性肿瘤中选择KRAS和PIK3CA共激活突变提供了潜在的机制依据,这对PI3'激酶靶向治疗的临床应用具有启示意义。