W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America.
PLoS One. 2013 Sep 3;8(9):e72130. doi: 10.1371/journal.pone.0072130. eCollection 2013.
The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. Antibiotic treated aseptic mosquitoes mounted molecular immune responses representing a variety of immune functions upon P. falciparum infection. Among other immune factors, our analysis uncovered a serine protease inhibitor (SRPN7) and Clip-domain serine protease (CLIPC2) that were transcriptionally induced in the midgut upon P. falciparum infection, independent of bacteria. We also showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense. Further exploration of this anti-Plasmodium defense will help clarify determinants of immune specificity in the mosquito, and expose potential gene and/or protein targets for malaria intervention strategies based on targeting the parasite in the mosquito vector.
冈比亚按蚊利用其先天免疫系统来控制其中肠组织的细菌和疟原虫感染。有效的 IMD 途径介导的抗疟原虫防御的激活依赖于中肠微生物群的存在,这些微生物群通过肽聚糖识别蛋白 PGRPLC 在寄生虫感染时激活这种防御系统。我们采用转录组学和反向遗传学分析来比较感染性和无菌蚊子的疟原虫感染反应转录组,以确定是否存在独立于细菌的抗疟原虫防御。抗生素处理的无菌蚊子在感染疟原虫后,会针对多种免疫功能产生分子免疫反应。在其他免疫因素中,我们的分析揭示了一种丝氨酸蛋白酶抑制剂(SRPN7)和 Clip 结构域丝氨酸蛋白酶(CLIPC2),它们在中肠中受到疟原虫感染的转录诱导,而与细菌无关。我们还表明,SRPN7 负调控抗疟原虫防御,CLIPC2 正调控抗疟原虫防御,这两种蛋白酶均独立于中肠相关细菌。共沉默实验表明,这两个基因可能在信号级联中共同发挥作用。感染啮齿动物疟原虫寄生虫疟原虫柏氏疟原虫既不会调节 SRPN7 基因的表达,也不会调节 CLIPC2 基因的表达,这表明 SRPN7 和 CLIPC2 是一种防御系统的组成部分,该防御系统对疟原虫具有优先活性。进一步使用 RNA 干扰分析确定,这两个基因不调节 IMD 途径介导的抗疟原虫防御,并且这两种因子都作为内源性中肠微生物群的激动剂,进一步证明这些基因与细菌依赖性 IMD 途径激活之间缺乏功能相关性。这是第一项证实存在独立于细菌的抗疟原虫防御的研究。进一步探索这种抗疟原虫防御将有助于阐明蚊子中免疫特异性的决定因素,并为基于针对蚊子媒介中的寄生虫的疟疾干预策略暴露潜在的基因和/或蛋白质靶标。