Suppr超能文献

人群层面疾病传播的差异:多种天花疫情的贝叶斯分析。

Population-level differences in disease transmission: a Bayesian analysis of multiple smallpox epidemics.

机构信息

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.

出版信息

Epidemics. 2013 Sep;5(3):146-56. doi: 10.1016/j.epidem.2013.07.001. Epub 2013 Jul 25.

Abstract

Estimates of a disease's basic reproductive rate R0 play a central role in understanding outbreaks and planning intervention strategies. In many calculations of R0, a simplifying assumption is that different host populations have effectively identical transmission rates. This assumption can lead to an underestimate of the overall uncertainty associated with R0, which, due to the non-linearity of epidemic processes, may result in a mis-estimate of epidemic intensity and miscalculated expenditures associated with public-health interventions. In this paper, we utilize a Bayesian method for quantifying the overall uncertainty arising from differences in population-specific basic reproductive rates. Using this method, we fit spatial and non-spatial susceptible-exposed-infected-recovered (SEIR) models to a series of 13 smallpox outbreaks. Five outbreaks occurred in populations that had been previously exposed to smallpox, while the remaining eight occurred in Native-American populations that were naïve to the disease at the time. The Native-American outbreaks were close in a spatial and temporal sense. Using Bayesian Information Criterion (BIC), we show that the best model includes population-specific R0 values. These differences in R0 values may, in part, be due to differences in genetic background, social structure, or food and water availability. As a result of these inter-population differences, the overall uncertainty associated with the "population average" value of smallpox R0 is larger, a finding that can have important consequences for controlling epidemics. In general, Bayesian hierarchical models are able to properly account for the uncertainty associated with multiple epidemics, provide a clearer understanding of variability in epidemic dynamics, and yield a better assessment of the range of potential risks and consequences that decision makers face.

摘要

疾病基本繁殖率 R0 的估计在理解疫情爆发和规划干预策略方面起着核心作用。在 R0 的许多计算中,一个简化的假设是不同宿主群体的传播率实际上是相同的。这种假设可能导致与 R0 相关的整体不确定性被低估,由于疫情过程的非线性,这可能导致对疫情强度的错误估计和与公共卫生干预相关的支出计算错误。在本文中,我们利用贝叶斯方法来量化由于特定人群基本繁殖率差异而产生的总体不确定性。我们使用这种方法拟合了空间和非空间易感-暴露-感染-恢复(SEIR)模型,以拟合一系列 13 例天花爆发。其中 5 例爆发发生在先前接触过天花的人群中,而其余 8 例发生在当时对该疾病一无所知的美洲原住民人群中。美洲原住民的爆发在空间和时间上都很接近。使用贝叶斯信息准则(BIC),我们表明最佳模型包括人群特异性 R0 值。这些 R0 值的差异可能部分归因于遗传背景、社会结构或食物和水供应的差异。由于这些人群间的差异,与天花 R0 的“人群平均值”相关的总体不确定性更大,这一发现对控制疫情可能具有重要意义。一般来说,贝叶斯层次模型能够正确地考虑到与多个疫情相关的不确定性,更清楚地了解疫情动态的可变性,并对决策者面临的潜在风险和后果范围做出更好的评估。

相似文献

1
Population-level differences in disease transmission: a Bayesian analysis of multiple smallpox epidemics.
Epidemics. 2013 Sep;5(3):146-56. doi: 10.1016/j.epidem.2013.07.001. Epub 2013 Jul 25.
2
Transmission potential of smallpox in contemporary populations.
Nature. 2001 Dec 13;414(6865):748-51. doi: 10.1038/414748a.
3
Bayesian inference for stochastic epidemic models with time-inhomogeneous removal rates.
J Math Biol. 2007 Aug;55(2):223-47. doi: 10.1007/s00285-007-0081-y. Epub 2007 Mar 15.
4
Modelling and Bayesian analysis of the Abakaliki smallpox data.
Epidemics. 2017 Jun;19:13-23. doi: 10.1016/j.epidem.2016.11.005. Epub 2016 Dec 9.
5
Uncertainty in predictions of disease spread and public health responses to bioterrorism and emerging diseases.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15693-7. doi: 10.1073/pnas.0600816103. Epub 2006 Oct 9.
6
Epidemic Landscape and Forecasting of SARS-CoV-2 in India.
J Epidemiol Glob Health. 2021 Mar;11(1):55-59. doi: 10.2991/jegh.k.200823.001. Epub 2020 Aug 28.
7
Non-exponential tolerance to infection in epidemic systems--modeling, inference, and assessment.
Biostatistics. 2012 Sep;13(4):580-93. doi: 10.1093/biostatistics/kxs011. Epub 2012 Apr 20.
8
Uncertainty and sensitivity analysis of the basic reproductive rate. Tuberculosis as an example.
Am J Epidemiol. 1997 Jun 15;145(12):1127-37. doi: 10.1093/oxfordjournals.aje.a009076.
9
Ring vaccination and smallpox control.
Emerg Infect Dis. 2004 May;10(5):832-41. doi: 10.3201/eid1005.030419.
10
Oscillatory dynamics of smallpox and the impact of vaccination.
J Theor Biol. 1996 Dec 21;183(4):447-54. doi: 10.1006/jtbi.1996.0234.

引用本文的文献

1
Weak-form inference for hybrid dynamical systems in ecology.
J R Soc Interface. 2024 Dec;21(221):20240376. doi: 10.1098/rsif.2024.0376. Epub 2024 Dec 18.
2
Estimating from early exponential growth: parallels between 1918 influenza and 2020 SARS-CoV-2 pandemics.
PNAS Nexus. 2022 Sep 17;1(4):pgac194. doi: 10.1093/pnasnexus/pgac194. eCollection 2022 Sep.
3
Emerging study on the transmission of the Novel Coronavirus (COVID-19) from urban perspective: Evidence from China.
Cities. 2020 Aug;103:102759. doi: 10.1016/j.cities.2020.102759. Epub 2020 May 1.
4
Improving early epidemiological assessment of emerging Aedes-transmitted epidemics using historical data.
PLoS Negl Trop Dis. 2018 Jun 4;12(6):e0006526. doi: 10.1371/journal.pntd.0006526. eCollection 2018 Jun.
5
A Novel Statistical Model to Estimate Host Genetic Effects Affecting Disease Transmission.
Genetics. 2015 Nov;201(3):871-84. doi: 10.1534/genetics.115.179853. Epub 2015 Sep 23.
6
Early-life hepatitis e infection in pigs: the importance of maternally-derived antibodies.
PLoS One. 2014 Aug 21;9(8):e105527. doi: 10.1371/journal.pone.0105527. eCollection 2014.

本文引用的文献

1
Transmissibility and geographic spread of the 1889 influenza pandemic.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8778-81. doi: 10.1073/pnas.1000886107. Epub 2010 Apr 26.
2
Variance Estimation in a Model with Gaussian Sub-Models.
J Am Stat Assoc. 2005 Mar 1;100(469):296-309. doi: 10.1198/016214504000000818..
5
The interplay between determinism and stochasticity in childhood diseases.
Am Nat. 2002 May;159(5):469-81. doi: 10.1086/339467.
6
Social contacts and mixing patterns relevant to the spread of infectious diseases.
PLoS Med. 2008 Mar 25;5(3):e74. doi: 10.1371/journal.pmed.0050074.
7
The dynamics of measles in sub-Saharan Africa.
Nature. 2008 Feb 7;451(7179):679-84. doi: 10.1038/nature06509.
8
Disease effects on reproduction can cause population cycles in seasonal environments.
J Anim Ecol. 2008 Mar;77(2):378-89. doi: 10.1111/j.1365-2656.2007.01328.x. Epub 2007 Nov 13.
9
Deterministic SIR (Susceptible-Infected-Removed) models applied to varicella outbreaks.
Epidemiol Infect. 2008 May;136(5):679-87. doi: 10.1017/S0950268807009260. Epub 2007 Jul 26.
10
Inference for nonlinear dynamical systems.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18438-43. doi: 10.1073/pnas.0603181103. Epub 2006 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验