Suppr超能文献

亲电试剂敏感蛋白的检测

Detection of electrophile-sensitive proteins.

作者信息

Wall Stephanie B, Smith M Ryan, Ricart Karina, Zhou Fen, Vayalil Praveen K, Oh Joo-Yeun, Landar Aimee

机构信息

Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Biochim Biophys Acta. 2014 Feb;1840(2):913-22. doi: 10.1016/j.bbagen.2013.09.003. Epub 2013 Sep 8.

Abstract

BACKGROUND

Redox signaling is an important emerging mechanism of cellular function. Dysfunctional redox signaling is increasingly implicated in numerous pathologies, including atherosclerosis, diabetes, and cancer. The molecular messengers in this type of signaling are reactive species which can mediate the post-translational modification of specific groups of proteins, thereby effecting functional changes in the modified proteins. Electrophilic compounds comprise one class of reactive species which can participate in redox signaling. Electrophiles modulate cell function via formation of covalent adducts with proteins, particularly cysteine residues.

SCOPE OF REVIEW

This review will discuss the commonly used methods of detection for electrophile-sensitive proteins, and will highlight the importance of identifying these proteins for studying redox signaling and developing novel therapeutics.

MAJOR CONCLUSIONS

There are several methods which can be used to detect electrophile-sensitive proteins. These include the use of tagged model electrophiles, as well as derivatization of endogenous electrophile-protein adducts.

GENERAL SIGNIFICANCE

In order to understand the mechanisms by which electrophiles mediate redox signaling, it is necessary to identify electrophile-sensitive proteins and quantitatively assess adduct formation. Strengths and limitations of these methods will be discussed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.

摘要

背景

氧化还原信号传导是细胞功能中一种重要的新兴机制。功能失调的氧化还原信号传导越来越多地与多种病理状况相关,包括动脉粥样硬化、糖尿病和癌症。这类信号传导中的分子信使是活性物质,它们可以介导特定蛋白质组的翻译后修饰,从而影响被修饰蛋白质的功能变化。亲电化合物是一类能够参与氧化还原信号传导的活性物质。亲电试剂通过与蛋白质,特别是半胱氨酸残基形成共价加合物来调节细胞功能。

综述范围

本综述将讨论检测亲电试剂敏感蛋白的常用方法,并强调识别这些蛋白对于研究氧化还原信号传导和开发新型疗法的重要性。

主要结论

有几种方法可用于检测亲电试剂敏感蛋白。这些方法包括使用标记的模型亲电试剂,以及对内源性亲电试剂 - 蛋白质加合物进行衍生化。

一般意义

为了理解亲电试剂介导氧化还原信号传导的机制,有必要识别亲电试剂敏感蛋白并定量评估加合物的形成。将讨论这些方法的优点和局限性。本文是名为“研究活性氧的当前方法 - 利弊与膜蛋白生物物理学”的特刊的一部分。客座编辑:克里斯汀·温特伯恩。

相似文献

1
Detection of electrophile-sensitive proteins.
Biochim Biophys Acta. 2014 Feb;1840(2):913-22. doi: 10.1016/j.bbagen.2013.09.003. Epub 2013 Sep 8.
3
Rac1 modification by an electrophilic 15-deoxy Δ(12,14)-prostaglandin J2 analog.
Redox Biol. 2015;4:346-54. doi: 10.1016/j.redox.2015.01.016. Epub 2015 Feb 3.
5
Formation, signaling functions, and metabolisms of nitrated cyclic nucleotide.
Nitric Oxide. 2013 Nov 1;34:10-8. doi: 10.1016/j.niox.2013.04.004. Epub 2013 Apr 28.
7
Regulation of Nrf2-dependent gene expression by 15-deoxy-Delta12,14-prostaglandin J2.
Free Radic Biol Med. 2009 Nov 1;47(9):1310-7. doi: 10.1016/j.freeradbiomed.2009.06.030. Epub 2009 Jun 30.
8
9
15-deoxy-Delta12,14-prostaglandin J2 as a potential endogenous regulator of redox-sensitive transcription factors.
Biochem Pharmacol. 2006 Nov 30;72(11):1516-28. doi: 10.1016/j.bcp.2006.07.030. Epub 2006 Sep 20.

引用本文的文献

4
Proteomic Methods to Evaluate NOX-Mediated Redox Signaling.
Methods Mol Biol. 2019;1982:497-515. doi: 10.1007/978-1-4939-9424-3_30.
5
Lipoproteins as targets and markers of lipoxidation.
Redox Biol. 2019 May;23:101066. doi: 10.1016/j.redox.2018.101066. Epub 2018 Dec 6.
6
Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview.
High Throughput. 2018 Apr 27;7(2):12. doi: 10.3390/ht7020012.
7
Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.
Chem Rev. 2017 Aug 9;117(15):10043-10120. doi: 10.1021/acs.chemrev.7b00042. Epub 2017 Jun 27.
8
Pleiotropic effects of 4-hydroxynonenal on oxidative burst and phagocytosis in neutrophils.
Redox Biol. 2016 Oct;9:57-66. doi: 10.1016/j.redox.2016.06.003. Epub 2016 Jun 23.
9
Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress.
Biochim Biophys Acta. 2016 Dec;1860(12):2802-15. doi: 10.1016/j.bbagen.2016.05.017. Epub 2016 May 18.

本文引用的文献

1
Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine.
J Lipid Res. 2013 Jul;54(7):1998-2009. doi: 10.1194/jlr.M037804. Epub 2013 Apr 25.
2
Reactive intermediates: molecular and MS-based approaches to assess the functional significance of chemical-protein adducts.
Toxicol Pathol. 2013 Feb;41(2):315-21. doi: 10.1177/0192623312467399. Epub 2012 Dec 6.
3
Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.
Free Radic Biol Med. 2013 Mar;56:89-101. doi: 10.1016/j.freeradbiomed.2012.11.010. Epub 2012 Nov 27.
4
Oxidative modification of proteins: an emerging mechanism of cell signaling.
Front Physiol. 2012 Sep 14;3:369. doi: 10.3389/fphys.2012.00369. eCollection 2012.
5
Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding.
Antioxid Redox Signal. 2013 Jan 1;18(1):94-127. doi: 10.1089/ars.2012.4521. Epub 2012 Sep 20.
6
A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A.
J Biol Chem. 2012 Jul 20;287(30):25596-601. doi: 10.1074/jbc.M112.369116. Epub 2012 Jun 1.
7
Analysis of oxidative stress-induced protein carbonylation using fluorescent hydrazides.
J Proteomics. 2012 Jun 27;75(12):3778-88. doi: 10.1016/j.jprot.2012.04.046. Epub 2012 May 8.
8
The electrophile responsive proteome: integrating proteomics and lipidomics with cellular function.
Antioxid Redox Signal. 2012 Dec 1;17(11):1580-9. doi: 10.1089/ars.2012.4523. Epub 2012 Apr 18.
9
Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy.
Am J Physiol Heart Circ Physiol. 2012 Apr 1;302(7):H1394-409. doi: 10.1152/ajpheart.00584.2011. Epub 2012 Jan 13.
10
Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions.
Chem Res Toxicol. 2012 Feb 20;25(2):239-51. doi: 10.1021/tx2003257. Epub 2011 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验